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These are the course notes for Math 525: Algebraic Number Theory course
given in Boğaziçi University in Spring ’22 by Alp Bassa.

0 Introduction

The textbook for the course is P. M. Cohn, Algebraic Numbers and Algebraic
Functions. This book is the elementary version of E. Artin, Algebraic Num-
bers and Algebraic Functions. A further aim might be to read the harder
version after (or during) this course.

Algebraic Numbers (Number Fields)

Number fields are the finite extensions of the rational field Q. Questions
about the arithmetic of the integers are answered by considering the number
fields and their ring of integers.

Question. Which primes can be written as a sum of two squares?

We see that
2 = 12 + 12, 5 = 22 + 12, 13 = 22 + 32,
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and that 3, 7, and 11 cannot be written as a sum of two squares. So we guess
that a prime number p is a sum of two squares if and only if p = 2 or p ≡ 1
mod 4.

It is easy to see that if p ̸= 2 and p ̸≡ 1 mod 4, then p cannot be written
as a sum of two squares because only other option for p modulo 4 is p ≡ 3
mod 4, yet only squares modulo 4 are 0 and 1, so 3 is not a sum of two
squares modulo 4.

On the other hand, if p = x2 + y2 for two integers x and y, in the field of
complex numbers this factors as p = (x+iy)(x−iy), or more precisely, in the
field Q(i), or even more precisely, in its ring of integers Z[i] which is called
the ring of Gaussian integers.

There is an interesting relation between the prime ideals of Z and the prime
ideals of Z[i]. As Z is a principal ideal domain, we can associate its prime
ideals with its prime elements. Under this view, an integer prime either
stays a prime in Z[i] or it “splits” into two Gaussian primes as given in the
following figure.

Figure 1: Primes of Z split as primes of Z[i].

Notice that 2 splits into two primes that are associates, so they generate the
same ideal in Z[i]. This is called a ramification.

But all these assume Z[i] is nice. That it has these so-called primes and
factorization but what does factorization in Z[i] even mean? Does it make
sense to talk about primes of Z[i]? Is every element of Z[i] a product of
primes? Is such a factorization unique?
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Proposition 0.1. The ring Z[i] of Gaussian integers is a Euclidean domain.

Proof. A Euclidean norm N : Z[i]→ Z≥0 on Z[i] is defined as the restriction
of the complex norm to Z[i].

Proposition 0.2. Every Euclidean domain is a unique factorization domain
(UFD).

We notice that the units of Z[i] can be classified as those elements z =
z1 + z2i ∈ Z[i] with norm N(z) = 1. Indeed, if z is a Gaussian unit, N(z)
is a positive integer unit, i.e. 1 because in such a case N(z)N(z−1) = 1
since the norm is multiplicative. On the other hand, if N(z) = 1, then
z21 + z22 = (z1 + z2i)(z1 − z2i) = 1, yielding an inverse to z.

The norm of an integer p is N(p) = p2. So if p ∈ Z[i] is reducible, say p = αβ
with α and β non-unit Gaussian integers, as the norm is multiplicative, both
N(α) and N(β) must be p.

It remains to prove the following proposition.

Proposition 0.3. If p ≡ 1 mod 4 is a prime in Z, then p = αβ for α and
β non-unit Gaussian integers.

Proof. When p ≡ 1 mod 4 the multiplicative group (Z/pZ)× = Z/(p− 1)Z
of the field Z/pZ of p elements is a cyclic group of order divisible by 4. Let

a be a generator of Z/(p− 1)Z. Then x = a
p−1
4 satisfies x2 + 1 ≡ 0 mod p.1

Now p must divide x2 + 1. If p were to stay a prime in Z[i], then it would
divide at least one of x+ i or x− i, implying but neither x

p
+ i

p
nor x

p
− i

p
is

a Gaussian integer. Hence p ∈ Z[i] is not a prime anymore. Since Z[i] is a
UFD, failing to be prime means failing to be irreducible.

Algebraic Functions

Take p(x, y) ∈ R[x, y] to be p(x, y) = y2− (x3−x). The zero locus of p above
the real line gives the following picture:

1Alternatively, one can use Wilson’s theorem that says (p − 1)! ≡ −1 mod p for a
prime p ∈ Z and take x = ((p− 1)/2)!.
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Figure 2: Real points of the elliptic curve E : y2 = x3 − x.

February 28

1 Fields with Valuations

1.1 Absolute Values

Given a nontrivial (commutative) ring R (with unity), an absolute value on
R is a function | · | : R→ R with

A1: |x| is nonnegative for all x ∈ R and zero if and only if x = 0.

A2: Triangle inequality. |x+ y| ≤ |x|+ |y| for all x, y ∈ R.

A3: |xy| = |x||y| for all x, y ∈ R.

Some immediate consequences of the definition are as follows:

Proposition 1.1. • |1| = 1.

• | − 1| = 1.
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• | − x| = |x|.

• | · |x| − |y| · | ≤ |x− y|

• |x1 + · · ·+ xn| ≤ |x1|+ · · ·+ |xn|.

Proof. • |1| = |1 · 1| = |1| · |1|, hence |1| = 1

• Let | − 1| = a > 0. Then | − 1| · | − 1| = a2 = |1| = 1, hence a = 1.

• | − x| = | − 1| · |x| = |x| by above.

• Note that

|x− y + y| ≤ |x− y|+ |y| =⇒ |x| − |y| ≤ |x− y|
|y − x+ x| ≤ |x− y|+ |x| =⇒ −|x− y| ≤ |x| − |y|

The result follows from these two.

• Proof is by induction. Base case n = 1 is trivial, suppose the result
holds for n = k. Then |x1 + . . . xk| ≤ |x1|+ . . .+ |xk|. So we have that
|x1 + . . . xk|+ |xk+1| ≤ |x1|+ . . .+ |xk|+ |xk+1|.

Proposition 1.2. If there is an absolute value on a commutative ring R with
unity, it is necessarily an integral domain.

Proof. Let a, b ∈ R such that |a|, |b| ≠ 0. Then |ab| = |a| · |b| ≠ 0 by A3, thus
ab ̸= 0 by A1.

Example 1.1. For any integral domain R, the trivial absolute value |·| : R→
R is defined as |x| = 0 if x = 0 and |x| = 1 if x ̸= 0 for any element x ∈ R.

Example 1.2. The usual absolute value on R or C.

Example 1.3. Let p ∈ Z be a prime number. Every rational number r ∈
Q can be written as r = pk a0

b0
where p ∤ a0, b0. The p-adic absolute value

| · |p : Q→ Q on such an r is defined as |r|p = p−k.

The intuition here is that the rationals whose nominator has lots of p factor
in it are “small”. This explains the intiution behind defining |0|p = 0.
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Example 1.4. Let K be a field and

K(x) = {f(x)
g(x)

: f(x) ∈ K[x], g(x) ∈ K[x]×

be its ring of rational functions. Given an irreducible element p(x) ∈ R,
elements of K(x) can be written as

f(x)

g(x)
= p(x)k

f0(x)

g0(x)

where p(x) ∤ f0(x), g0(x). We define the absolute value | · |p(x) : R → R on

such a rational function as |f(x)
g(x)
|p(x) = 2−k2, and we set |0|p(x) := 0.

The next proposition is part an example, part a proposition.

Proposition 1.3. The only absolute value on Fq is the trivial absolute value.

Proof. Let x be a non-zero element in Fq. Then |xq−1| = |1| = 1 = |x|q−1 by
A3. Then by A1, |x| = 1.

A2’: Ultrametric inequality. |x+ y| ≤ max{|x|, |y|}

An absolute value satisfying A2’ is called a non-archimedean absolute value.

Proposition 1.4 (Strict triangle inequality). For a non-archimedean abso-
lute value, if |x| ≠ |y| then |x+ y| = max{|x|, |y|}.

Proof. Without loss of generality say |x| > |y|. Assume |x+y| ≠ max{|x|, |y|}
so |x+y| < max{|x|, |y|} = |x|. But |x| = |x+y−y| ≤ max{|x+y|, |y|} < |x|,
contradiction.

Using the strict triangle inequality, we can infer that every triangle in nonar-
chimedean geometry is isosceles. Indeed, if the three corners of the triangle

2Actually, any real number greater than 1 works. (Does it?)

6



are x, y, z, then |x− z| = |x− y + y − z| = max{|x− y|, |y − z|} and either
|x− y| = |y − z| or |x− y| equals of |x− y| or |y − z|.

A good example is the ring K((x)) of formal Laurent series over a field K.
An absolute value on K((x)) maps

∑∞
n=N anx

n to 2−N . For N ̸= M, two
elements f(x) =

∑∞
n=N anx

n and g(x) =
∑∞

n=M bnx
n with absolute values

2−N and 2−M , respectively, have the absolute value 2min{−N,−M} when added.
A similar account holds for the ring of integers when they are viewed as base
p numbers. For example 11 = 230 + 031 + 132 and 6 = 231 have absolute
values 20 and 21, respectively, and their sum 17 = 230 + 231 + 132 has the
absolute value 20 = min{20, 21}.

Proposition 1.5. Let R be a commutative ring with an absolute value | · |R.
Then the absolute value can be extended uniquely to an absolute value on the
field of fractions F of R.

Proof. By Proposition 1.2, R must be an integral domain. Let F be its field
of fractions; any r ∈ F has the form r = a

b
, where a, b ∈ R with b ̸= 0. If

there is such an extension of |.|R in R to |.|F in F since rb = a by A3 we
must have |a|F = |b|F |r|F as a, b ∈ R these absolute values must coincide
which means |a|F = |a|R and |b|F = |b|R. Therefore if such an extension

exists it must be this way |r|F = |a|R
|b|R

. This shows that there is at most one
extension. To show that it really exists we must prove that it is well defined
and it satisfies the axioms of being an absolute value. Now let r = a

b
= a′

b′
,

hence ab′ = ba′ using the multiplicativity of |.|R we get |a| · |b′| = |b| · |a′|
so |a|R

|b|R
= |a′|R

|b′|R
. This shows that |.|F is well defined on F. The verification of

A1-A3 is straightforward.

Proposition 1.6. For a commutative ring R, an absolute value | · | : R→ R
on R is non-archimedean if and only if |m · 1R| ≤ 1 for all m ∈ Z, i.e. the
set {|m · 1R| : m ∈ Z} ∈ [0, 1] is bounded.

Proof. If R is non-archimedean, then the result is trivial if we use complete
(or strong) induction. For the reverse direction we have

|x+y|n =
∣∣ n∑
i=0

(
n

i

)
xiyn−i

∣∣ ≤ n∑
i=0

∣∣(n
i

)
·1R
∣∣|x|i|y|n−i ≤ (n+1)max{|x|, |y|}n.
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Taking the n’th root of the above equation and letting n to infinity gives the
result.

Corollary 1.7. Any absolute value on a field of positive characteristic is
non-archimedean.

Proof. When the field is finite,It is immediate from Proposition 1.3.

Assume that F is an infinite field of positive characteristic p.In particular,we
have p.1F = 0F .Let k ∈ N,then using divison Algorithm,there exists q, r ∈ N
such that k = pq + r.Thus,we have that |r.1F | = |k.1F |. and |k.1F | ≤
|1F |+ ...+ |1F |,so the image of F restricted to Z is bounded which shows that
|.|F is non-Archimedean.

1.1.1 Topology defined by an absolute value

Once we have an absolute value on a field K, we can define a metric d : K ×
K → R with

M1: d(x, y) ≥ 0 for all x, y ∈ K and d(x, y) = 0 if and only if x = y.

M2: d(x, y) = d(y, x) for all x, y ∈ K.

M3: d(x, z) ≤ d(x, y) + d(y, z)∀x, y, z ∈ K.

M4: Translational invariance. d(x+ a, y + a) = d(x, y) for all a ∈ K.

M5: d(a · x, a · y) = |a|d(x, y) for all a ∈ K.

Note that we can always recover the original absolute value as |x| = d(x, 0).

Endowed with this metric, we can talk about open (resp. closed) sets or balls
on K and continuity.

Proposition 1.8. Field operations are continuous.
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Proof. We need to show that changing x ∈ K to some a ∈ K while changing
y ∈ K to b ∈ K, we get results comparable to the size of the change. For
example, in the case of addition, we see that

d(x+ y, a+ b) = |(x+ y)− (a+ b)|
= |(x− a) + (y − b)|
≤ |x− a|+ |y − b|
= d(x, a) + d(y, b).

Similarly, for multiplication we get

d(xy, ab) = |xy − ab|
= |(y − b)a+ (x− a)b+ (x− a)(y − b)|
≤ d(y, b)|a|+ d(x, a)|b|+ d(x, a)d(y, b).

Also, for inversion one has

d(x−1, a−1) = |x−1 − a−1|

=

∣∣∣∣1x − 1

a

∣∣∣∣
=

∣∣∣∣a− xxa

∣∣∣∣
=

∣∣∣∣ a− x|x| · |a|

∣∣∣∣
=
d(a, x)

|x||a|

This shows that there is a correspondence between the absolute values on
K and the topologies on K. For example, in the case of the trivial absolute
value, every singleton is open because the ball of radius 1/2 centered at a
point contains only that point; hence, the trivial absolute value corresponds
to the discrete topology.

In light of this observation, we say that two absolute values on K are equiv-
alent if they define the same topology on K. The next proposition gives us
more ways to realize such a relation.
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Proposition 1.9. The following are equivalent for two non-trivial absolute
values | · |1 and | · |2 on K

(i) | · |1 and | · |2 are equivalent.

(ii) B(0, 1, | · |1) ⊂ B(0, 1, | · |2).

(iii) For each x ∈ K, if |x|1 < 1 then |x|2 < 1.

(iv) For each x ∈ K, if |x|1 > 1 then |x|2 > 1.

(v) There is some nonnegative real number γ ∈ R such that |x|1 = |x|γ2 for
every x ∈ K.

Proof.

March 2

Lemma 1.10. For an absolute value || : K → R on a field K,

lim
n→∞

∣∣∣∣ an

1 + an

∣∣∣∣ =
{
0 if |a| < 1

1 if |a| > 1.

Proof. For |a| < 1 we have

∣∣∣∣ an

1 + an

∣∣∣∣ = |an|
|1 + an|

≤ |a|n

||1| − |a|n|
using reverse-

triangle inequality. For sufficiently large n, ||1| − |a|n| > c for some positive
constant c. Letting n → ∞ shows the assertion. For the case |a| > 1,

note that
|an|
|1 + an|

≤ |a|n

||1| − |a|n|
and

|an|
|1 + an|

≥ |a|n

1 + |a|n
. It follows that

1 ≤ lim
n→∞

|an|
|1 + an|

≤ 1.

The next theorem says that two inequivalent absolute values are seriously
independent.
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Theorem 1.11 (Approximation theorem). Given a field K, nontrivial pair-
wise inequivalent absolute values ||1, . . . , ||r on K, elements α1, . . . , αr ∈ K,
and ϵ ∈ R+, there is always some α ∈ K such that

|α− α1|1 < ϵ, . . . , |α− αr| < ϵ.

Proof. For each j = 1, 2, . . . , r we will find some uj ∈ K such that uj is close
to 1 with respect to the absolute value ||j and close to 0 with respect to ||i
for all i ̸= j. Then α = α1u1 + · · ·+ αrur will satisfiy

|α− αj| ≤ |αj||uj − 1|+
∑
i ̸=j

|αi||ui|,

and we will be able to make it as small as possible.

As the absolute values are pairwise inequivalent, when r = 2 we can find
some a, b ∈ K such that |a|1 > 1 ≥ |a|2 and |b|2 > 1 ≥ |b|1 by Proposition
1.9. Then ab−1 satisfies |ab−1|1 > 1 ≥ |ab−1|2. For the inductive step we
assume there is some a ∈ K with |a|1 > 1 > |a|2, . . . , |a|r and find some
c ∈ K that keeps these relations and also satisfies |c|r+1 < 1.

If |a|r+1 < 1 we are done. On the other hand, when |a|r+1 = 1, using the
argument in the base case we find some b ∈ K such that |b|1 > 1 > |b|r+1.
If ab satisfies all the relations, we are done. Otherwise, for some big enough
n ∈ N, we can take c = anb. Finally, if |a|r+1 > 1, again for some b ∈ K with
|b|1 > 1 > |b|r+1, we take c = an

1+an
b making use of Lemma 1.10.

Corollary 1.12. Given a field K, nontrivial pairwise inequivalent absolute
values ||1, . . . , ||r on K, elements α1, . . . , αr ∈ K, and ϵ1, . . . , ϵr ∈ R+, there
is always some α ∈ K such that

|α− α1|1 < ϵ1, . . . , |α− αr| < ϵr.

Proof. Take ϵ = min{ϵ1, . . . , ϵr} and use the approximation theorem.
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1.2 Completions

Given a ring R with an absolute value || : R → R on it, a sequence (cn)n∈N
of elements cn ∈ R is said to converge to c ∈ R if

lim
n→∞

|cn − c| = 0,

or equivalently, given ϵ > 0 there is some index N ∈ N such that |cn− c| < ϵ
for all n > N.

A sequence (cn)n∈N is called a Cauchy sequence if for every ϵ > 0 there is
some index N ∈ N such that |ci − cj| < ϵ for all i, j > N.

Looking at the inequality |ci− cj| ≤ |ci−L|+ |cj −L| for a sequence (cn)n∈N
converging to some L ∈ R, we see that every convergent sequence is Cauchy;
but, it is certainly not the case that every Cauchy sequence is convergent in
an arbitrary ring R.

For example, when R = Q the sequence

(cn)n∈N = (3, 3.1, 3.14, 3.141, 3.1415, . . . )

of the prefixes of the irrational number π ∈ R of increasing length converges
to π in the reals, but it merely keeps getting closer and closer to the actual
value of π when viewed in the rationals with the limit limn→∞ cn undefined.

A ring R is said to be complete with respect to some absolute value || : R→ R
if every Cauchy sequence in R is convergent with respect to ||.

Theorem 1.13. For every ring R with some absolute value |·| on it, there ex-

ists a complete absolute valued ring R̂ and an analytic (isometric) embedding

ι : R ↪→ R̂ such that

1. R is dense in R̂,

2. R̂ is complete,

3. R̂ is universal, that is, if f : R ↪→ Ŝ is any analytic embedding of R
into a complete ring Ŝ, then there is a unique embedding f̂ : R ↪→ Ŝ
such that the following diagram commutes:
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4. R̂ is a field if R is a field.

Proof. The set RN = {(cn)n∈N : cn ∈ R∀n ∈ N} of sequences in R forms a
ring under componentwise addition and multiplication.

The set C of Cauchy sequences in R forms a subring of RN. Indeed, if (cn)n∈N
and (dn)n∈N are two Cauchy sequences in R, then (cn + dn)n∈N and (cn ·
dn)n∈N are Cauchy sequences because the addition and the multiplication
are continuous with respect to the absolute value | · |.

The set I of Cauchy sequences that converge to 0 is an ideal of C, or more
generally, of the set of bounded sequences. Let R̂ = C/I.3 We can view
an element r ∈ R as the constant sequence (r, r, . . . ) ∈ C. For s ∈ R, if
s ̸= r then (r, r, . . . ) and (s, s, . . . ) are in different classes in C/I because
(rs, rs, . . . ) /∈ I. Therefore,

ι : R ↪→ C/I

r 7→ r + I := (r, r, . . . ) + I

is an embedding.

We can extend the absolute value | · | : R→ R to R̂ as

ι : R ↪→ C/I

(cn) + I 7→ lim
n→∞

|cn|.

The limit exists because (|cn|) is a Cauchy sequence (since ||ci| − |cj|| ≤
|ci − cj|) in the complete field R. Also, the mapping of classes to reals is
well-defined because if (cn)n∈N − (dn)n∈N ∈ I, then limn→∞ |cn| limn→∞ |dn|.
Now, ι becomes an embedding.

We see that R is dense in R̂ as for (αn)n∈N + I ∈ R̂, (α − αk) + I goes to

0 + I with respect to the extended absolute value on R̂. It follows that for
every α ∈ R̂ there is always some α′ ∈ C such that α′ + I is arbitrarily close
to α + I with respect to | · |, hence ι(R) ∼= R is dense in R̂.

3Put another way, we add a point in the limit of each non-convergent (cn)n∈N ∈ C; but
we do not want to put two different elements in the same spot, so we set (cn)n∈N ∼ (dn)n∈N
for (cn)n∈N, (dn)n∈N ∈ C if limn→∞ cn = limn→∞ dn, and mod out by this relation.
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Let (α(n))n∈N be a Cauchy sequence in R̂. Since R is dense in R̂, for each
n ∈ N there is some βn ∈ R such that

|α(n) − βn| <
1

n
.

Let us call β = (βn)n∈N. It follows that (α
(n) − β)n∈N is a Cauchy sequence

in R̂, hence so is (α(n) − (α(n) − β)) = β. Because

|α(n) − β| ≤ |α(n) − βn|+ |βn − β|,

we see that limn→∞ |α(n) − β| = 0.

Given an analytic embedding f : R→ Ŝ of R into a complete ring Ŝ, define

f̂ : R̂→ Ŝ

(αn)n∈N 7→ lim
n→∞

(f(α)n)n∈N.

For two representatives (α′
n)n∈N + I = (αn)n∈N + I of the same class,

lim
n→∞

|f(αn)− f(α′
n)| = lim

n→∞
|f(αn − α′

n)|

= lim
n→∞

|αn − α′
n|

= 0.

So f̂ is well-defined, and

f̂(ι(r)) = f̂(r + I) = lim
n→∞

f(r) = f(r).

As |(αn)n∈N| = limn→∞ |f(αn)| = f̂((αn)n∈N), we see that f̂ is analytic.

Furthermore, f̂ is an embedding because if f̂((an)n∈N) = 0, then

lim
n→∞

|f(an)| = lim
n→∞

|an| = 0,

so (an)n∈N + I = 0 + I ∈ R̂. Because R is dense in R̂, the map f̂ : R̂ ↪→ Ŝ is
unique.

If R̂′ is another complete ring with R dense in it, there exist embeddings
f̂ : R̂ ↪→ R̂′ and ĝ : R̂′ ↪→ R̂, so R̂ ∼= R̂′.
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When R is a field, the inverse of a nonzero class of sequences (cn)n∈N ∈ R̂
where c = (cn)n∈N is a representative with no zero coordinates is c−1 :=
(c−1

n )n∈N ∈ RN. We see that c−1 ∈ C \ I because

|c−1
i − c−1

j | = |
cj − ci
cicj

where the numerator goes to 0 and the denominator is bounded.

Question. Does R̂ being a field imply that R is a field?

Example 1.5. With respect to the usual absolute value, the completion of

R = Q̂ and C = Q̂(i).

March 7

Answer. No, consider K[x, x−1] ⊂ K((x)) which is a subring of the field
of formal Laurent series. It is not a field as x2 + 1 ∈ K[x, x−1] but its
inverse 1

x2+1
is not in this subring as it is not a Laurent polynomial. Consider

its completion with respect to the absolute value defined as |a
b
|x = 2−r for

a
b
= xr a0

b0
where x ∤ a0, b0. For bigger r, a

b
becomes highly divisible by x so

we get smaller absolute value, meaning that with completion we are allowed
to have higher degrees of x, but for x−1 converse happens so principal part
stops at some −N. Hence its completion gives the field of Laurent series.

1.2.1 Archimedean Absolute Values

We will not concern ourselves with archimedean absolute values as they are
not particularly interesting from a number theoretical point of view, so we
confine ourselves to just stating the following theorems.

Theorem 1.14. (Ostrowski’s Theorem)

1. Any archimedean absolute value on Q is equivalent to the usual absolute
value.

2. Let K be a field with an archimedean absolute value for which it is
complete, then K ∼= R or K ∼= C.
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1.3 Valuations

Let K be a field with a non-archimedean absolute value | · |. We had defined
the p-adic absolute value as |x| = p−v, so we can think of v as v(x) =
−log(|x|). With this idea in mind, we add an element ∞ to the real field
such that x <∞ for all x ∈ R and define a valuation as a mapping v : K →
R ∪ {∞} which satisfies the following axioms:

V1: v(x) ∈ R for all 0 ̸= x ∈ K and v(0) =∞.

V2: v(x+ y) ≥ min{v(x), v(y)} for all x, y ∈ K.

V3: v(xy) = v(x) + v(y) for all x, y ∈ K.

Some basic facts about valuations are given in the following proposition.

Proposition 1.15. Let v : K → R∪{∞} be a valuation on the field K. Then

1. v(1) = v(−1) = 0.

2. v(−x) = v(x) for every 0 ̸= x ∈ K.

Proof. By V3, v(−1) = v(1) + v(−1) =⇒ v(1) = 0. Then v(1) = v(−1) +
v(−1) = 0 =⇒ v(−1) = 0. Again by V3, v(−x) = v(−1)+ v(x) = v(x).

For two absolute values we said they are equivalent if one is a positive power
of the other. Translating it to valuations via v(x) = − log |x| we get that two
valuations v1 and v2 are equivalent if for some γ > 0 we have v1(x) = γv2(x)
for all x ∈ K.

Example 1.6. Trivial absolute value gives the trivial valuation

v(x) =

{
∞, x = 0
0, x ̸= 0.
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Example 1.7. For a prime number p, we can define the p-adic valuation

v : Q→ R ∪ {∞}

as vp(a/b) = r for
a

b
= pr

a0
b0

where p ∤ a0, b0.

Proposition 1.16. Γ = v(K∗) ⊂ R is a subgroup of (R,+). Here Γ is called
the value set.

The real part of the image v(K×) of the valuation is called the value set of
the valuation v.

Proposition 1.17. The value set Γ = v(K×) associated to the valuation
v : K → R ∪ {∞} is a subgroup of (R,+). Furthermore, either Γ = 0 and v
is trivial, or

1. Γ has a least positive element and Γ = λZ for some λ > 0.

2. Γ does not have a least positive element and Γ is dense in R.

Proof. For two elements v(k1), v(k2) ∈ Γ, we have

1. −v(k1) = v(k−1
1 ) ∈ Γ.

2. v(k1)− v(k2) = v(k1/k2) ∈ Γ.

For the case (i), say λ ∈ Γ is the least positive element. As Γ is a subgroup,
every multiple nλ ∈ Γ for all n ∈ Z. Say a ∈ Γ which is not of the type nλ.
Choose nλ such that it is the closest element of λZ, but then 0 < a−nλ < λ
meaning that λ is not the least positive element, contradiction. Therefore,
Γ = λZ.

Now suppose that Γ does not contain a least positive element. Since v is not
a trivial valuation, it has an element k ̸= 0 such that v(k) > 0. Since Γ does
not contain a least positive element there exist a sequence of elements kn such
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that an = v(kn) → 0 as n → ∞. Since this sequence has an accumulation
point at 0, and Γ is an additive group, we are done.

Valuations in the first case are called discrete valuations.

As valuations are equivalent up to multiplication with a constant, multiply-
ing with 1

λ
we get Γ = Z. This valuation is called the normalized discrete

valuation.

Proposition 1.18. If v(x) ̸= v(y) then v(x+ y) = min{v(x), v(y)}.

Corollary 1.19. If x1 + ...+ xn = 0 for some x1, . . . , xn ∈ K×, then at least
two summands have the same valuation.

Proof. Otherwise

∞ = v(0) = min{v(x1), . . . , v(xn)} <∞.

A subring V of K with the property that for all x ∈ K× either x ∈ V or
x−1 ∈ V is called a valuation ring. Elements of V are called V -integers.

Proposition 1.20. The set Ov = V = {x ∈ K : v(x) ≥ 0} ∪ {0} ⊂ K
analogous to the closed unit ball in the topology induced by the related absolute
value is a valuation ring.

Proof. By definition, 0 ∈ Ov.Let x1, x2 ∈ V,hence we have v(x1 + x2) =
min(v(x1), v(x2)) since both v(x1) and v(x2) are greater than zero,their min-
imum will be greater than 0,showing x1 + x2 ∈ V.Similarly, v(x1x2) =
v(x1) + v(x2),so from this one can easily deduce that x1x2 ∈ V.So it is a
subring of K.Let x ∈ Kx,then if v(x) ≤ 0,then v(x−1) ≥ 0 showing that
x−1 ∈ V. Hence V is a valuation ring.
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We will call Ov the valuation ring associated to the valuation v.

Example 1.8. If v is the trivial valuation, then the valuation ring associated
to v is K itself.

Example 1.9. If v is the p-adic valuation on the rationals, then

V = {a
b
: (a, b) = 1 and p ∤ b}.

Given a valuation ring V of a field K, we can ask whether it comes from
some valuation v on K. Notice that divisibility in V is reflected on v because
if ab = c with a, b, c ∈ K, then v(a) + v(b) = v(c) where v(a), v(b), v(c) ≥ 0,
so v(a) ≤ v(c). It follows that a | c if and only if ca−1 ∈ V. Using that V is
a valuation ring, given a, c ∈ V \ {0}, either ca−1 ∈ V or ac−1 ∈ V, so either
a | c or c | a.

March 14

Proposition 1.21. Every valuation ring V is a local ring.

Proof. Suppose m1,m2 ◁ V are two maximal ideals of V. Take a ∈ m1 \ m2

and c ∈ m2 \m1. In particular a and c are in V, so either a | c and c ∈ m1 or
c | a and a ∈ m2.

The field V/m is called the residue field of V.

If V is associated to a valuation v on K, then the unique maximal ideal
V \ V × of V is given by

m = V \ V × = {x ∈ K : v(x) > 0}.

In this case, the field V/m is also called the residue field of v.

A generalized valuation v : K → T ∪ {∞} has the image any totally ordered
group T . Now, given any valuation ring V ⊂ K, we can define a generalized
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valuation

v : K → T ∪ {∞}
x 7→ xV ×

0 7→ ∞

where T = K×/V ×.

Instead, we will work on the case where the valuation ring is a principal
ideal domain. These are called principal valuation rings. They correspond
in a one-to-one manner to normalized discrete valuations. In this case, the
unique maximal ideal of the valuation ring will be generated by each and
every element p ∈ K with v(p) = 1.

Proposition 1.22. If m = p · V then p is irreducible in V.

Proof. If d | p for some d ∈ V, then (d) ⊇ (p), but (p) is a maximal ideal.

Proposition 1.23. Every c ∈ K× can be written uniquely in the form

c = pr · u

with r ∈ Z and u ∈ V ×.

Proof. As V is a PID, it is in particular a UFD. It is moreover local, so it
has a unique irreducible element, i.e. a unique prime.

Associated to a principal valuation ring V we recover the valuation

v : K → R ∪ {∞}
pru 7→ r

0 7→ ∞.

Any generator of the maximal ideal of a principal valuation ring is called a
uniformizer.

March 14

From the discussion above follows the following theorem.
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Theorem 1.24. There is a 1-1 correspondence between normalized principal
valuations and principal valuation rings.

Example 1.10. The p-adic valuation on Q has the value set Z and the
valuation ring

Vp =
{a
b
∈ Q : p ∤ b

}
with the maximal ideal

mp =
{a
b
∈ Q : p ∤ b and p | a

}
.

The residue field in this case is Vp/mp
∼= Fp.

Theorem 1.25. Any nontrivial valuation V on Q is a p-adic valuation for
some prime p.

Proof. By Theroem 1.24, it is enough to find all valuation rings V of Q.

Now, let V be a valuation ring of Q. Since 1 ∈ V we have Z ⊂ V. Let m
be the maximal ideal of V. Consider m ∩ Z.Since Z ↪→ V so for any prime
ideal p of V,p ∩ Z is a prime ideal of Z,therefore m ∩ Z is a prime ideal of
Z. Then m ∩ Z is either generated by 0 implying V = Q corresponding to
the trivial valuation, or some prime number p ∈ Z which corresponds to the
p-adic valuation because divisibility in V is reflected on the magnitude of the
valuation, so n ∈ pZ if and only if vp(n) ≥ vp(p).

The idea in the proof can be generalized as follows:

Let f : A → B be any ring homomorphism.Let p be any prime ideal of B
and let’s define pc = {x ∈ A : f(x) ∈ p} .Then pc is a prime ideal of A.In
our case,since we embed Z into V,so any pre-image of prime ideal has the
form Z ∩ p.

1.4 Function Fields

Let K be a field. Consider the field K(x) of rational functions on K. Anal-
ogous to Z sitting inside Q with the p-adic valuation on it for every prime
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integer p, we have K[x] ⊂ K(x) with the p(x)-adic valuation on it. In Ex-
ample 1.4, we have seen the p(x)-adic absolute value and the valuation is
defined similarly as

vp(x)

(a
b

)
= r for 0 ̸= a

b
= p(x)r

a0(x)

b0(x)
where p(x) ∤ a0(x), b0(x)

and vp(x)(0) =∞.

A valuation of K(x) over K is one that is trivial on K. Note that the p(x)-
adic valutaion on K(x) is over K. This is a concept that does not appear in
the rationals. Its goal is to focus on the contribution of K(x) \ K and not
the coefficients’.

Theorem 1.26. If (Vp(x),mp(x)) is a valaution ring associated to p(x) ∈ K[x],
there is the chain

K ↪→ Vp(x)
ϕ
↠ Vp(x)/mp(x)

with kerϕ ∩K = {0}. Therefore Vp(x)/mp(x) is a field extension of K. More
explicitly,

Vp(x) =

{
a(x)

b(x)
: p(x) ∤ b(x)

}
mp(x) =

{
a(x)

b(x)
∈ : p(x) ∤ b(x) and p(x) | a(x)

}
,

and Vp(x)/mp(x) = K(x) where x = x + m ∈ Vp(x)/mp(x) is the class of x ∈
K[x].

Proof.

Theorem 1.27. Any nontrivial valuation on K(x) is either a p(x)-adic val-
uation for some irreducible polynomial p(x) ∈ K[x] or it is the valuation
associated to x−1 given by

vx−1

(
f(x)

g(x)

)
= deg g(x)− deg f(x)

where we set deg 0 = −∞.
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Proof. Similar to Theorem 1.24, it is enough to find all the valuation rings
V ⊂ K[x] of K(x). Let m be the maximal ideal of V.

Case 1 K[x] ⊂ V or, equivalently, x ∈ V : The ideal m ∩K[x] of K[x] is
generated either by 0 implying V = K(x) and the valuation is trivial, or by
some irreducible polynomial p(x) ∈ K[x], hence V = Vp(x).

Case 2 x /∈ V, so x−1 ∈ m: We have K[x] ⊂ K(x), but there is no canonical
way of choosing a generator for transcendental extensions like K(x). Any[
a b
c d

]
∈ PGL2(K) gives another generator ax+b

cx+d
for K(x). In particular,

K[x−1] ⊂ K(x−1) = K(x) and by assumption x−1 ∈ V. So x−1K[x−1] = m◁V
because x−1 is irreducible in K[x−1].

Given a(x−1)/b(x−1) ∈ K(x−1), we can write

a(x−1)

b(x−1)
= (x−1)r

a0(x
−1)

b0(x−1)

where x−1 ∤ a0(x−1), b0(x
−1). For a polynomial f = a0x

n + · · · + an ∈ K[x],
we have

f = (x−1)n(a0 + · · ·+ an(x
−1)n)

and define vx−1(f) = −n = − deg f. Now if f(x)
g(x)
∈ K(x) we can set

vx−1

(
f(x)

g(x)

)
= v(f(x))− v(g(x))

= − deg f − (− deg g)

= deg g − deg f.

Example 1.11. If K is an algebraically closed field, say K = C, then there
is a valuation for each irreducible polynomial x − α ∈ C[x] and one corre-
sponding to x−1. From the geometric object C, one gets the field C(x) of
rational functions on C. By looking at valuations, one returns to the initial
object plus ∞. This is in fact P1(C) with the affine chart A1(C) ∼= C, but
the point P1(C) \ A1(C) depends on the choice. For example, if one prefers
0 to be the point at infinity, x−1 is replaced by[

0 1
1 0

]
x−1 = x.
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Example 1.12. Instead of looking at the affine space, we can specialize
the above construction to the case of an irreducible variety E ⊂ A2(C) for
example defined by f(x, y) = y2 − x2(x + 1) ∈ K[x, y]. For each point P ̸=
O on the elliptic curve E we get a valuation on K(x, y) with the relation
f(x, y) = 0 corresponding to the inclusion K(x) ⊂ K(x, y), and one at ∞
corresponding to the point O on E.

For most points, the correspondence between the points of the elliptic curve
and the valuations is 2-to-1, except for the points with y = 0 which are called
the ramification points.

Example 1.13. Associated to each α ∈ C, we have a valuation on C(x) and
also the evaluation map f(x)

g(x)

evα7→ f(α)
g(α)

, but the denominator might not always

be defined. This corresponds to (x− α) ∤ g(x), i.e. the evaluation is defined
only on Vx−α. The map

π : Vx−α → Vx−α/mx−α

f(x)

g(x)
7→ f(x)

g(x)
+mx−α

now has the image the field of definition of α.

Example 1.14. For a field that is not algebraically closed such as K = R,
there are three types of valuations: one per each x− α, α ∈ R, one per each
x2 + ax+ b with a, b ∈ R, a2 − 4b < 0, and one for x−1.

In the first case, the valuation ring and its unique maximal ideals are

Vx−α =

{
f

g
: x− α ∤ g

}
,

mx−α =

{
f

g
: x− α ∤ g and x− α | f

}
,

respectively, with the quotient map given by

Vx−α
ϕ→ Vx−α/mx−α

evα∼= R
f

g
7→ f

g
+mx−α 7→

f(α)

g(α)
.
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In the second case, for example x2 + 1 gives has the imaginary solutions
{i,−i} where neither one of them is defined over R independently, but the
Galois orbit is defined as a whole and leads to a unique valuation over R(x)
because for f, g ∈ R[x],

f

g
(i) = 0 ⇐⇒ f

g
(i) =

f

g
(−i) = 0.

Similarly, in general, for any x2 + ax+ b ∈ R[x] with a2− 4b < 0 there is one
single valuation on R(x) with the valuation ring Vx2+ax+b given by

Vx2+ax+b =

{
f

g
: x2 + ax+ b ∤ g

}
,

the maximal ideal mx2+ax+b given by

mx2+ax+b =

{
f

g
: x2 + ax+ b ∤ g and x2 + ax+ b | f

}
.

The residue field is

Vx2+ax+b/mx2+ax+b = R[x]/(x2 + ax+ b)

= R(x) ∼= C
f

g
7→ f

g
(i).

It is interesting to note that on Q each distinct pair of primes p and q leads
to residue fields Z/pZ and Z/qZ that lives in disjoint worlds.

March 16

If (V, p) is the (local) valuation ring associated to some (discrete) valuation

v : K → R ∪ {∞}, the completion K̂ with respect to the absolute value
|x| = γ−v(x) for some γ > 1 induced on K has the valuation ring

W = {x ∈ K̂ : v(x) ≥ 0}

with the maximal ideal P . Note that V = W ∩K.

Proposition 1.28. With the notation above, V/p = W/P .
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Proof. Let a ∈ W. As v(a) = limn→∞ v(an) ≥ 0, we can see a as a Cauchy
sequence in V. This means there is some N ≥ 0 such that |c− ck| < 1 for all
k ≥ N which translates to v(c− ck) > 0, hence c− ck ∈ P.

By the second isomorphism theorem,

V/p = V/(V ∩ P) ∼= (V + P)/P = W/P .

By the definition of valuation of a Cauchy sequence, the value group ∆ of
v on K̂ is the completion of the value group Γ of v on K. In particular, if
Γ = Z then ∆ = Z, too.

We have seen that when v is a principal valuation the valuation ring V is a
principal ideal domain. In particular, the unique maximal ideal p = (p) for
some prime p ∈ V. An element x ∈ K is in pnV if and only if pn | x in V, i.e.
v(x) > n−1. So the balls of the form pnV form a basis for the neighborhoods
of 0. Mimicking this construction around nay a ∈ V/pn \ {0} we see that

a+ pnV = {x ∈ V : v(a) > n− 1}

is an open neighborhood of a. So

V/pnV =
⋃

a∈V/pn\{0}

a+ pnV

is open. But now, both pnV and V \ pnV are open, hence the topological
space V is disconnected. Moreover, we can separate any two points by taking
n sufficiently large. So the only connected subsets of V are singletons, i.e. V
is totally disconnected.

Every x ∈ K× can be written in a unique way as

x = pnu

for some unit u ∈ V × =: U, so we have

K× = ⟨p⟩ × U.
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Define
Un := 1 + pnV = {x ∈ K : v(x− 1) ≥ n}.

For example, if U is the units of the completion KJxK of K[x] under the
valuation associated to x, then

Un = {1 + anx
n + an+1x

n+1 + . . . }.

We have the filtration
K× ⊇ U0 ⊇ U1 ⊇ . . .

where U0 = V. The intersection of all Un is given by

∞⋂
n=1

Un = {1}.

The surjective group homomorphism ϕ↾U : U ↠ F× which is the restriction
of the ring homomorphism ϕ : V → F = V/p has the kernel kerϕ↾U = U1.
Similarly Un/Un+1

∼= F for each n ≥ 0.

1.5 Completion and Power Series

Let K be a field, v a principal valuation v on it with a uniformizer π. So
we know that v(π) = 1 and the maximal ideal p of the valuation ring V is
generated by π.

Let A ⊂ V be a set of representatives of each coset under ϕ : V → V/p.

Example 1.15. For the p-adic valuation onQ we can take A = {0, . . . , p−1}.

Example 1.16. For the x-adic valuation on K(x) we can take A = K.

Now, assume 0 ∈ A represents p. Every c ∈ K× can be written uniquely as
c = πru for some integer r ∈ Z and a unit u ∈ V × in the valuation ring.
There is a unique nonzero element of A such that

ϕ(u) = ϕ(cπ−r = ϕ(a)
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which means a−cπ−r ∈ ⟨π⟩, i.e. v(c−π−ra) ≥ 1 implying v(c−πra) ≥ r+1.
So for any n ≥ r there is a unique sum arπ

r + ar+1π
r + · · ·+ anπ

n such that
v(c− (arπ

r + ar+1π
r + · · ·+ anπ

n)) ≥ n+ 1 where each ai ∈ A and ar ̸= 0.

Every element in K× has a unique representative as a power series, but not
every power series corresponds to an element of K. This holds only if K is
complete.

Define addition and multiplication on A as follows: Given elements a1, a2 ∈ A
their sum a1 + a2 = a where a ∈ A is by construction the unique element
satisfying ϕ(a) = ϕ(a1 + a2); similarly, their product a1a2 = b for ϕ(b) =
ϕ(a1a2).

Now, given two power series

c =
∑

aiπ
i and c′ =

∑
a′iπ

i,

define their sum c+ c′ as
c+ c′ =

∑
siπ

i

where

s0 = a0 + a′0 mod ⟨π⟩

s1 = (a0 + a′0 − s0)π−1 + a1 + a′1 mod ⟨π⟩ ...

and their product cc′ as

cc′ =
∑

tiπ
i

where

t0 = a0a
′
0 mod ⟨π⟩

t1 = (a0a
′
0 − t0)π−1 + a0a

′
1 + a1a

′
0 mod ⟨π⟩ ...

For example, one may write

17 = 230 + 231 + 132

where A = {0, 1, 2} or

17 = 230 + 231 + 432 + 233 + 234 + . . . .
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2 Extensions

Let w be a valuation on a field L extending another field K, let W ⊂ L be
the associated valuation ring with the maximal ideal Q ⊂ W, and let ∆ be
the value group of w. The residue class field of w is denoted Lw = W/Q.

The restriction v = w↾K is a valuation on K. We say w lies over v. Let V be
the valuation ring of v with the maximal ideal P ⊂ V. The value group Γ of
v is not only a subset but also a subgroup of ∆. In particular, if ∆ is trivial,
then so is Γ. Let Kv = V/P be the residue class field of v.

If ∆ and Γ are both nontrivial so that ∆ = rZ and Γ = sZ for some r, s ∈ R,
then s = kr for some k ∈ Z and ∆/Γ ∼= Z/kZ is finite. The ratio e = (∆ : Γ)
is called the ramification index of L/K or of Q/P. The extension is said to
be ramified if e > 1 and unramified otherwise.

Since v is a restriction of w, the valuation ring V of v can also be expressed
as

V = {x ∈ K : w(x) = 0} = W ∩K.

Conversely, if W ⊂ L is a valuation ring, then W ∩ K will always be a
valuation ring of K. Indeed, if x ∈ K then either x ∈ W or x−1 ∈ W because
W is a valuation ring of L ⊃ K, but both x and x−1 are always in K, so
either x ∈ W ∩K or x−1 ∈ W ∩K, proving that W ∩K is a valuation ring
of K.

Similarly,
P = {x ∈ K : w(x) > 0} = Q ∩K.

It is also true that P = Q ∩ V.

Comparing the residue class fields, we see that

Kv = V/P = V/(Q ∩ V ) ∼= (V +Q)/Q ⊂ W/Q = Lw.

When Lw is a finite extension of Kv, the extension degree f = [Lw : Kv] is
called the residue degree or the inertia degree of L/K or of Q/P or of W/V.4

4Sometimes there will be multiple pairs of residue class field extensions attached to the
same pair of fields with varying residue degrees.
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The following example carries the geometric intuition:

Example 2.1. Let L = R(x) be the field of rational functions with real
coefficients. We have seen in Example 1.14 that L has one valuation at
∞ corresponding to x−1 and one valuation for each irreducible polynomial
p(x) ∈ R[x]. Number fields do not have isomorphic subfields, but in the
function field case we have

K = R(t) = R(x2) ∼= L.

The indeterminate x above has the irreducible polynomial irr(x,K) = T 2−t,
so the extension degree [L : K] = 2. In this particular setup, it is true that

L = K(x) = R(t)(x) = R(x).

So L can be written as L = R(t, x) with x2 = t.

Geometrically, the situation is reflected in the following figure.

The picture tells us that there will be a valuation on K for each valuation
x− x0 (or point x0) on L by forgetting the x-coordinate. It also tells us that
there are three possibilities going up:

1. Above any valuation t−t0 (or point t0) ofK there will be two valuations.

2. At 0 the two points collide.

3. For the negative points −t0 there will be complex points (−t0,
√
t0i)

above. Together these complex points (−t0,±
√
t0i) form a Galois orbit

and a single valuation corresponding to x2 + t20 with residue class field
C whereas the residue class field below is R. ♢
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IfK ⊆ L ⊆M is a tower of field extensions with a valuation u ofM restricted
to w on L and v on K, then the residue degrees satisfy

fu/v = fu/wfw/v.

If the value groups of u, v and w are A,∆ and Γ, respectively, then the
ramification indices satisfy

eM/K = (A : Γ) = (A : ∆)(∆ : Γ) = eM/LeL/K .
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Theorem 2.1. If a valuation w on L lies over some valuation v on K with
ramification index e and residue degree f, then

ef ≤ [L : K].

Proof. If [L : K] =∞, then there is nothing to prove.

Suppose [L : K] = dimK L < ∞. Then it is enough to find ef many K-
linearly independent elements in L.

By the definition of f = [Lw : Kv], there are u1, . . . , uf ∈ W such that
u1, . . . , ur ∈ Lw are linearly independent over Kv where W is the valuation
ring of w. We claim that u1, . . . , ur are linearly independent over K. Indeed,
being linearly independent, the images u1, . . . , ur are never 0 = Q in Lw, so
u1, . . . , uf /∈ Q which means w(ui) = 0 for all i = 1, . . . , f where Q is the
maximal ideal of W. If there were a1, . . . , af ∈ K such that

a1u1 + · · ·+ afuf = 0, i.e. w(a1u1 + · · ·+ afuf ) =∞,

then assuming that –without loss of generality– w(a1) ≤ w(ai) for all i and
w(a1) = w(aj) for all j = 1, . . . , k for some k < f , set ci = ait

−l where t is a
uniformizer of w and l = w(a1). Then we get

c1u1 + · · ·+ ckuk = ctl+1t−l

for some c ∈ L. Reducing modulo Q, we get that cj = 0 and aj = 0 for all
j = 1, . . . , k because

c1u1 + · · ·+ ckuk = 0

where u1, . . . , uk are linearly independent over Kv. Repeating with

ak+1u1 + · · ·+ afuf = 0,

we see that f ≤ [L : K]. In particular, if L/K is finite, then f is finite, i.e.
the extension Lw/Kv is finite.

To complete the proof, choose some π1, . . . , πe ∈ L such that

{w(π1), . . . , w(πe)}
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is a complete set of representatives of cosets ∆/Γ. The claim is that

{uiπj}i=1,...,f, j=1,...,e

consists of K-linearly independent elements of L.

Indeed, if ∑
i,j

aijuiπj = 0

for some aij ∈ K, then for Aj =
∑

i aijui we get that
∑

j Ajπj = 0. By
Proposition 1.18, w(Ahπh) = w(Akπk) for some h ̸= k which implies

w

(
πk
πh

)
= min{v(a1h), . . . , v(afh)} −min{v(a1k), . . . , v(afk)} ∈ Γ.

Contradiction.

Corollary 2.2. If a valuation w on L lies over a valuation v on K, then v
is trivial (resp. principal) if and only if w is.

Proof. As v is the restriction of w, the properties of w obviously emanate on
to v. On the other hand, if v is trivial, as ∆ ≤ Z having |∆| = e · |Γ| = e is
not possible. Similarly, if v is principal, then we have

∆ ⊆ 1

e
Γ,

so w is principal, too.

Corollary 2.3. If L/K is an algebraic field extension, then Lw/Kv is also
algebraic and ∆/Γ is torsion.

2.1 Complete Fields

Fix a field K, complete with respect to an absolute value | · |.

A function ∥ · ∥ : V → R on a K-vector space V satisfying

N1: ∥x∥ ∈ R for all 0 ̸= x ∈ K and ∥x∥ =∞.
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N2: ∥x+ y∥ ≥ min{∥x∥, ∥y∥} for all x, y ∈ K.

N3: ∥cy∥ = |c|∥y∥ for all x, y ∈ K.

is called a norm.

A norm defines a metric d(x, y) = ∥x− y∥ satisfying d(cx, cy) = |c|d(x, y) for
all c ∈ K.

March 28

Let V be a finite dimensional K-vector space. Fix a basis w1, . . . , wn (hence
an isomorphism V ∼= K) for V over K. For any x =

∑n
i=1 ciwi define the

cubical norm on V as ∥x∥ = max{|ci|}. Note that the value depends on the
basis, but the topologies induced by different bases are equal.5

Lemma 2.4. If (K, |·|) is complete, then (V, ∥·∥) is also complete. Moreover,
any other norm on V gives the same topology as the cubical norm.

Proof. Let (aj)j∈N be a Cauchy sequence in V. Let each ai be given as

aj =
n∑

i=1

cijwi,

where {w1, . . . , wn} is a basis of V over K and each cij ∈ K.

Being a Cauchy sequence in this setup of cubical norm means

lim
j,k→∞

max
i
|cij − cik| = 0.

In particular,
lim

j,k→∞
max |cij − cik| = 0

for each i = 1, . . . , n. Using that K is complete, let bi be the limit of (cij)j∈N.
It easily follows that

a = lim
j→∞

(aj) =
n∑

i=1

biwi.

5This goes to say that the linear transformations and in particular the base changes
are continuous.
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This concludes the first part of the lemma.

Now, let N(·) be any other norm on V. To show that N(·) and ∥ · ∥ induces
the same topology on V it suffices to prove that limj→∞N(aj) = 0 if and
only if limj→∞ ∥aj∥ = 0 which amounts to telling that

=⇒ : Opens of the topology induced by N(·) are contained in those of ∥ · ∥.

⇐= : Opens of the topology induced by ∥ · ∥ are contained in those of N(·).

Hence that they induce the same topology.

Let (aj)j∈N be a sequence in V such that ∥aj∥ → 0. Then, with the notation
above,

N(
n∑

i=1

biwi) ≤
n∑

i=1

N(biwi)

=
n∑

i=1

|bi|N(wi)

≤
n∑

i=1

max
i
|bi|N(wi)

= ∥a∥
n∑

i=1

N(wi),

and the last sum is a constant depending on the basis, so N(aj)→ 0.

Conversely, if N(aj) → 0 and ∥aj∥ ↛ 0, then at least one limit bi0 does not
converge to 0. Without loss of generality, assume i0 = 1. Let (a′j) be given
as

a′j =
aj
|b1j|

,

where j runs over a subsequence of (b1j) satisfying

|b1j > ϵ0

for some ϵ0 > 0.
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We are back to to the initial setting of this implication, but now we have
c1j = 1 for all j’s in this restricted subsequence. As c1j = 1 always, the
cubical norm ∥a′j∥] ≥ 1 always. But now

0 = lim
j→∞

N(w1 + c2jw2 + · · ·+ cnjwn)

= N(w1) + lim
j→∞

N(c2jw2 + · · ·+ cnjwn),

so
lim
j→∞

N(w1 + c2jw2 + · · ·+ cnjwn) = −N(w1). (1)

Note that the lemma holds for V = K. By induction, we can assume that
it also holds for W = ⟨w2, . . . , wn⟩ ⊂ V. In particular, it says that W is
complete, but the contradiction is given by (1) which says w1 ∈ W.

We saw that topology induced by a norm is unique on a complete field which
means that norms are all equivalent. Let ||1 and ||2 be two norms on L which
is an extension of a complete field K. Equivalence implies that ||1 = ||γ2 but
as they agree on K we must have γ = 1, meaning that ||1 = ||2. Hence we
have the following theorem.

Theorem 2.5. Let K be a complete absolute valued field. Then any algebraic
extension E of K has at most one extension of the absolute value and it is
complete for the induced topology

March 30

In order to consider the extensions of valuations v on K, we can equivalently
deal with valuation rings W ⊇ V of L for a valuation ring V of K.

Let R be a subring of K. An element c ∈ K is said to be integral over R if
it satisfies a monic equation

cn + a1c
n−1 + · · ·+ an−1c+ an = 0

for some ai ∈ R.

Homework 2.1. When R = Z and K = Q(i), elements c ∈ K that are
integral over R are precisely the elements of Z[i].
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The set of elements c ∈ K such that c is integral over R is called the integral
closure of R in K. If the integral closure of R in K is R itself, then we say R
is integrally closed in K.

Homework 2.2. Principal ideal domains are integrally closed in their field
of fractions.

Proposition 2.6. Unique factorization domains are integrally closed in their
field of fractions.

Proof. Let K be the field of fractions of a UFD R. Let a
b
∈ K where a and

b are relatively prime. If(a
b

)n
+ a1

(a
b

)n−1

+ · · ·+ an = 0

for some ai ∈ R, then multiplying by a common denominator b we get

b(a1a
n−1bn−2 + · · ·+ anb

n−1) = −an.

Since R is a UFD, it follows that b | an, but the assumption was that b and
a are relatively prime, so b must be a unit.

For a nonexample look at R = k[x, y]/(y2−x3). As y2−x3 ∈ k[x, y] is prime,
the quotient ring R is an integral domain. Let K be its field of fractions.
Take c = y

x
∈ K. Because of the relation asserted by y2 − x3 = 0, in R[T ] we

have
c2 − x = 0.

This is an anomaly due to the zero set

of y2 − x3 being singular.

Theorem 2.7. The integral closure of an integral domain R in its field of
fractions K is a subring of K.

To prove this theorem, we look for an easier description of integrality over
R.
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Lemma 2.8. Integrality of c ∈ K over R is the same as there being a finitely
generated nonzero R-submodule M of K such that

cM ⊆M.

Proof. ( =⇒ ) if c ∈ K satisfies

cn + a1c
n−1 + · · ·+ an = 0

for some ai ∈ R, then we can replace cn by

cn = −(a1cn−1 + · · ·+ an),

and use this relation to rewrite cn+i for all i > 0 in terms of 1, c, . . . , cn−1.
This says that the R-algebra R[c] is a finitely generated R-module.

( ⇐= ) Let {u1, . . . , un} be a set of genereators for M. By assumption, we
can write

cu1 = c11u1 + · · ·+ c1nun
...

cun = cn1u1 + · · ·+ cnnun.

In terms of matrices, this is

A

u1...
un

 = 0

for

A =


c11 − c c12 . . . c1n
c21 c22 − c . . . c2n
...

...
...

cn1 cn2 . . . cnn − c

 .
The determinant detA is 0 and it gives a monic relation for c over R.

Proof. (Theorem 2.7.) Given c1, c2 with M1, M2 satisfying the assertion
of Lemma 2.8, take M = M1M2 for c1 + c2 or c1c2 to prove closure under
addition and multiplication.
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Lemma 2.9. Valuation rings are integrally closed in their field of fractions.

Proof. Let W be a valuation ring of L with the field of fractions K. Every
c ∈ L satisfies either c ∈ W so c ∈ K, or c /∈ W so c−1 ∈ W yielding c ∈ K.
It follows that L ⊆ K. As L is a field and W ⊆ L ⊆ K, we get that the field
of fractions K = L.

Let c ∈ L be integral over W. Assume c /∈ W. It follows that c−1 ∈ m ◁ W
where m is the unique maximal ideal of W. If c satisfies

cn + a1c
n−1 + · · ·+ an = 0

for some ai ∈ W, then

1 = −a1c−1 − · · · − an(c−1)n ∈ m.

This contradiction proves that W is integrally closed in its field of fractions
K.

It is a fact that the integral closure of some subring R of a field K is the
intersection of all valuation rings of L containing K. If our aim is to find
valuation rings extending some V ⊆ K, then we can look for valuation rings
W containing the integral closure of V in L.

Theorem 2.10. If L is a finite and algebraic extension of K, and V is a
valuation ring of K, then there is a valuation ring W of L containing V.

Proof. Let I be the integral closure of V in L.

Claim. The field of fractions of I is L.

Proof of claim. Every γ ∈ L satisfies some polynomial

f(x) = xn + a1x
n−1 + · · ·+ an ∈ K[x].

By Theorem 2.7, K is the field of fractions of V ; therefore, expressing each
ai as ai =

bi
b′i
we can write f(x) = g(x)/c for

g(x) = cxn + b1x
n−1 + · · ·+ bn ∈ V [x]
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and c = b′1 · · · b′n. Note that

g(γ) = cγn + b1γ
n−1 + · · ·+ bn = 0.

Multiplying by cn−1 we get

ηn + b1η
n−1 + b2cη

n−2 · · ·+ bnc
n−1 = 0

where η = cγ which, as shown, satisfies a monic equation over V ; therefore,
η ∈ I. It follows that γ = η

c
is in the field of fractions F of I. As γ is arbitrary,

L ⊆ F, so L = F.

Consider the family F of subrings S of L containing I and having the inter-
section S ∩K = V. Note that F ̸= because I ∈ F as V is integrally closed.
By Zorn’s lemma, F has a maximal element W.

If R is a subring of L containingW, then for c ∈ R\W we have K∩W [c] = K
by maximality of W. ... [missing]

Every r ∈ W [c] induces a map α
mr7→ rα on W [c] between K and finite-

dimensional K-vector space L, hence itself a K-vector space with kermr =
{0}. AsW [c] is finite dimensional,mr is an isomorphism; in particular, rs = 1
for some s ∈ W [c], i.e. W [c] is a field. Since the field of fractions of I is L, it
follows that W [c] = L, and W is a maximal subring of L which is not a field
because W ⊊ L because W ∩K = V.

Take c ∈ W with c−1 /∈ W. By the above claim,W [c−1] = L. If L were finitely
generated as a W -module, for a fixed m which is the maximum such that
c−m appears in the generators of L, every element of L would be in the form
ac−m for some a ∈ W, but c−(m+1) ∈ L is a counterexample, showing that L
is not finitely generated as a W -module.

To see that W is a valuation ring of L, assume there is some u ∈ L such that
neither u nor u−1 is in L. Then W [u] = W [u−1] = L by the maximality of
W as a subring of L. It follows that

u = a0 + a1u
−1 + · · ·+ aru

−r

u2 = a0u+ a1 + · · ·+ aru−r+1

...
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So un can be written as a W -linear combination of 1, . . . , u−r, contradicting
the previous paragraph.

This proof uses Zorn’s Lemma, so it is not very constructive. To construct
valuations in field extensions L/K whereK is complete, we define a valuation
w : E → R ∪ {∞} on E, the normal closure of L, and restrict it to L to
get a valuation u : L → R ∪ {∞} on L. By the theorem (2.5), there is a
unique extension w of v to E. If σ : E → E is an automorphism of E, then
w ◦ σ : E → R ∪∞ is once again a valuation on E, by the uniqueness then
w = w ◦ σ. Now we define the norm NE/K(α) of α ∈ E over K as

NE/K(α) = σ1(α) . . . σr(α) ,

where {σ1, . . . , σr} is the set of automorphisms of E over K. Then

w(NE/K(α)) = w

(
r∏

i=1

σi(α)

)
=

r∑
i=1

w(σi(α)) = r · w(α) . (2)

The set of automorphisms of E is a group so σ{σ1, . . . , σr} = {σ1, . . . , σr}
for any σ ∈ Aut(E), it follows that NE/K ∈ K, so

w(NE/K(α)) = v(NE/K(α)) .

Combining this with (2) we get w(α) =
v(NE/K(α))

r
. By the normality of E,

we have the following

w(α) =
1

[E : K]
v(NE/K(α))

Now consider the case that α is transcendental overK which is not necessarily
complete, define a valuation w onK[α] by extending v as w : K[α]→ R∪{∞}
via

f = a0 + · · ·+ anα
n 7→ min{v(a0), . . . , v(an)} .

The function w on K[α] is a valuation. (Hint: the same idea as in Gauss’
Lemma) Passing to the field of fractions K(α) of K[α] define w(f/g) =
w(f)− w(g).

This valuation w is called the Gaussian extension of v to K(α). Because w is
defined by minimums, the value group ∆ of K(α) and the value group Γ of
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K are equal. Since α = 1 ·α, its valuation w(α) = 1, so α ∈ W the valuation
ring of K(α). If Q ◁W is the unique maximal ideal of W, then α + Q ∈ Lw

is transcendental. Indeed if

a0 + a1(α +Q) + . . . , an(α +Q)n = 0

in Kv, where V is the valuation ring of v, each ai = ai + P for some ai ∈ K
where P ◁ V is the unique maximal ideal of V. The ring operations on Kv

require a0+a1α+ · · ·+anαn ∈ Q, in other words w(a0+a1α+ · · ·+anαn) > 0
but v(ai) = 0 for some ai so that the polynomial is not constantly zero. This
contradiction shows that there is no such f, meaning that α is transcendental
over Kv. We can sum up our conclusion as follows:

Theorem 2.11. Let K be any field with a general valuation v and L = K(α)
a purely transcendental extension. Then the Gaussian extension of v to L is
a valuation on L, with the same value group as v and with residue class field
Kv(α), a purely transcendental extension of the residue class field Kv of K.

2.1.1 Extensions of Incomplete Fields

Let L/K be a field extension. Let v be a valuation on K. Let K̂ be the
completion of K with respect to v. We can base extend L to the K-algebra
via L ⊗K K̂. This K̂-algebra will factor as

∏
Ki = L ⊗K K̂ and v will be

extended to wi on each Ki.

2.1.2 Tensor Products

Let K be a ring. Let U, V be K-modules. A map f : U × V → W from the
direct product U × V of U and V to a K-module W is said to be K-bilinear
if it is K-linear in both entries, in other words

f(au1 + bu2, v) = af(u1, v) + bf(u2, v)

f(u, av1 + bv2) = af(u, v1) + bf(u, v2)

for all a, b ∈ K. In the case that K is a field and U = V is a K-algebra,
the map (u1, u2) 7→ u1u2 is a K-bilinear map on the set U × U. The tensor
product is the tool to understand bilinear maps.
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Theorem 2.12. Given K-modules U and V, there exists a K-module U⊗KV,
called the tensor product of U and V over K such that every bilinear map

f : U × V → W

factors as in the following commutative diagram

U × V ϕ //

f ##

U ⊗K V

f̃zz
W

for some ϕ : U × V → U ⊗K V fixed for the U, V pair and a K-module
homomorphism f̃ .

Proof. Consider the free K-module A on U × V. Imposing the bilinearity
conditions, consider the submodule B ⊂ A genearated by

(au1 + bu2, v)− a(u1, v)− b(u2, v)

and
(u, av1 + bv2)− a(u, v1)− b(u, v2)

for all a, b ∈ V, ui ∈ U, vi ∈ V. Define U ⊗K V to be

U ⊗K V = A/B,

and the map ϕ as

ϕ : U × V → A/B

(u, v) 7→ u⊗ v.

The elements of the form u⊗ v are called the pure tensors, and

A/B = {ci((u, v) +B)} = {ciu⊗ v}

is the set of K-bilinear combinations of pure tensors.

Define f̃ as

f̃ : U ⊗K V → W

(u⊗ v) 7→ f(u, v).

The well-definedness of f̃ is left as an exercise.
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Starting from K-modules U and V we have arrived at a K-module U ⊗K V.
If K was a field and U and V were K-algebras, then using µ1 : U ⊗K U → U
and µ2 : V ⊗K V → V factoring the multiplication maps U × U → U and
V × V → V, we define the coordinatewise map µ on U ⊗K V as

µ : (U ⊗K V )× (U ⊗K V )→ U ⊗K V

(u1 ⊗ v1, u2 ⊗ v2) 7→ µ1(u1 ⊗ u2)⊗ µ2(v1 ⊗ v2)

and see that U ⊗K V is a K-algebra, too.

In our case of interest, we will have U = K(α) and V = K̂. If f(x) =
irr(α,K), then U = K[x]/fK[x].

Theorem 2.13. There are the isomorphisms

K(α)⊗K K̂ ∼= K̂[x]/fK̂[x]

∼= K̂[x]/g1K̂[x]⊕ · · · ⊕ K̂[x]/grK̂[x

for some g1, . . . , gr ∈ K̂[x] such that

f = g1 . . . gr.

April 6

To see that M ⊗N is unique, take

M ×N ϕ′
//

g
$$

H

g̃~~
K

such that g is a bilinear map that factors throughH. Then takingK =M⊗N
and the earlier module to be H, we see that M ⊗N ∼= H.

Proposition 2.14. Let M be an R-module. Then

M ⊗R R ∼= M.

Proof. We will give two different proofs: one directly constructive, the other
showcasing the universal property.
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1. Write the isomorphism explicitly:

M ⊗R R ∼= M.

rm⊗ 1 = m⊗ 1 7→ rm

m⊗ 1←[ m

2. Every bilinear map f : M×R→ L for someR-module L factors through
M by a bilinear map

f̃ : M → L

m 7→ f(m, 1).

Note that f = f̃ ◦ ϕ where

ϕ : M ×R→M

(m, r) 7→ rm,

since

f̃(ϕ(m, r)) = f̃(rm)

= rf̃(m)

= rf(m, 1)

= f(m, r).

The R-module isomorphism f̃ thus defined is unique because of the
restrictions of being bilinear.

M ×R ϕ //

f
##

M

f̃~~
L

Proposition 2.15. Let Mi, i ∈ I and N be R-modules. Then(⊕
i∈I

Mi

)
⊗R N ∼=

⊕
i∈I

(Mi ⊗R N) .
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Proof. Exercise.

In our case of interest, we will take all Mi in Proposition 2.15 to be R and
denote

⊕
i∈I R = RI whence it says that every element of RI ⊗R N can be

written in a unique way as a finite sum∑
ei ⊗ yi

where {ei}i∈I is the standard basis of the free R-module R and yi ∈ N is
nonzero for only finitely many i ∈ I.

Corollary 2.16. Let K be a field and letM and N be K-vector spaces. Then
{ei⊗K fj} is a basis for M ⊗K N if {ei}i∈I is an K-basis for M and {fj}j∈J
is an K-basis for N.

Proof. Apply Proposition 2.15 twice: with M ∼= KI and with N ∼= KJ .

Say A is a K-algebra and F/K is a field extension. In particular, F is a free
K-module. Let {ei}i∈I be a basis of F over K. Then

F ⊗K A ∼= (
⊕
i∈I

K)⊗K A

∼=
⊕
i∈I

(K ⊗K A)

∼=
⊕
i∈I

A.

Let {bj}j∈J be a K-basis for A. By Corollary 2.16, {ei ⊗ bj} is a K-basis for
F ⊗K A. Including F in the scalars, {1 ⊗ bj}j∈J is a basis of F ⊗K A as an
F -module. In particular,

dimK A = dimF (F ⊗K A).

April 11

Let E/K and F/K be two field extensions. Assume that E/K is a separable
degree n extension. By the primitive element theorem E = K(β) with f(β) =
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0 for some irreducible f ∈ K[x] of degree n. In particular, E = K[x]/(f) is
an n-dimensional E-vector space. The inclusion K ↪→ F induces an inclusion
K[x] ↪→ F [x] between the polynomial rings which in turn induces an inclusion
K[x]/fK[x] ↪→ F [x]/fF [x] between the quotient rings.

Lemma 2.17. Let f, K, and F be as above. Then

K[x]/fK[x]⊗K F ∼= F [x]/fF [x].

Proof. We will give two proofs:

1. One way to prove this isomorphism is to show that the right hand side
satisfies the universal property of the tensor product.

The bilinear map λ : E × F → F [x]/fF [x] is given as

λ(h+ fK[x], c) = hc+ fF [x].

To show the existence and uniqueness of the factoring map is left as an
exercise.

2. The bilinear map λ in the first proof factors through E ⊗K F to some
˜lambda.

E × F //

λ
##

E ⊗K F

λ̃

L

If cmx
m + · · · + c0 ∈ F [x]/fF [x], then λ̃(xm ⊗ cm + · · · + 1 ⊗ c0) =

cmx
m + · · ·+ co; therefore, λ̃ is surjective. Moreover, by the discussion

after Corollary 2.16,

dimF (F [x]/fF [x]) = deg f = n;

hence,
E ⊗K F ∼= F [x]/fF [x].
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The polynomial f(x) seen in F [x] might not be irreducible anymore. Let

f(x) = g1(x) . . . gr(x)

where g1, . . . , gr ∈ F [x] be distinct irreducible polynomials. Then

E ⊗K F = K1 ⊕ · · · ⊕Kr

where
Kj = F [x]/(gj).

For each j = 1, . . . , r there is an inclusion

ιj : E ↪→ Kj

β 7→ βj,

and F sits in Kj as the field of constants. Also, there are the projections

πj : E ⊕K F ↠ Kj.

Composing, we get
λj : E → Kj.

The kernel kerλj is either 0 or the all of E. As λj|K is the identity on K, we
have kerλj = {0}, i.e. λj injects into Kj.

Now, set F = K̂. For each j = 1, . . . , r the valuation v on the complete field
K̂ extends uniquely to some valuation wj on Kj by some earlier theorem.
The restrictions vj = wj|E are valuations on E.

Lemma 2.18. Each Kj is the completion of E at vj.

Proof. There exists the maps

L = K ⊗K L ↪→ K̂ ⊗K L↠ Kj

where the injection has dense image because K is dense in K̂.

Lemma 2.19. Up to equivalence v1, . . . vr are all the extensions of v to E.
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Proof. Let v′ be a valuation on E extending v. As E = K ⊗K E sits densely
in K̂ ⊗K E, by continuity, v′ defines a valuation on

K̂ ⊗K E = K1 ⊕ · · · ⊕Kr.

Defining v′(kj) = v′(0, . . . , 0, kj, 0, . . . , 0) we see that v′ defines a valuation
on each Kj that extends v; but such an extension is unique as Kj is a finite
separable extension of K, so v′|Kj

= wj.

Without loss of generality, if v′|K1
̸= 0 ̸= v′|K2

, then for α1 ∈ K1 and α2 ∈ K2

with v′(α1) ̸= 0 ̸= v′(α2) the contradiction is given by

0 ̸= v′(α1)v
′(α2)

= v′(α1, 0, 0, . . . , 0)v
′(0, α2, 0, . . . , 0)

= 0.

It follows that v′ on E is either the trivial valuation or one of the vj.

Lemma 2.20. The valuations w1, . . . , wr are pairwise inequivalent.

Proof. (I could not hear the proof.)

Theorem 2.21. (Collect all of them in our context here.)

Theorem 2.22. Let L/K be Galois of degree n, let v be a principal valuation
on K, and let w1, . . . , wr be all the extensions of v to L. Then the ramification
indices e(wi|v) are all equal

e = e(wi|v),∀i,

and the inertia degrees f(wi|v) are all equal

f = f(wi|v),∀i.

Proof. Follows from the Galois group acting transitively on the valuations.
For details, consult the textbook.

48



2.2 Dedekind Domains

The ring OK of integers of a number field K is given by the integral clo-
sure of Z in K, denoted icK(Z). The following proposition is another way of
expressing OK :

Proposition 2.23. The ring OK is the set of elements of K satisfying a
monic polynomial with integer coefficients.

Proof.

Up until now, we considered valuations on Q and their extensions to number
fields. We have the following proposition to connect these approaches:

Proposition 2.24. For each prime p ∈ Z one has the containment Z ⊆ Op

and
Z =

⋂
p prime

Op.

Proof.

One can generalize this proposition to number fields.

Theorem 2.25. For each valuation ring O of some number field K, one has
the containment Z ⊆ O and the integral closure icK(Z) of Z in K is given as

icK(Z) =
⋂

O valuation ring of K

O.

Proof.

What is more general than looking at all valuations on a number field is
to consider a family S of pairwise inequivalent principal valuations on an
arbitrary field K and the associated ring

OS =
⋂
v∈S

Ov

of S-integers. The family S is called the prime divisors or places.
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Example 2.2. Let K = Q and S = {v2, v3}. Then

OS = O2 ∩ O3

= {a
b
∈ Q|2, 3 ∤ b}.

Let us denote by MK all the valuations on some field K.

Example 2.3. Let K = k(x) for some field k, and let S = MK . Recall
from Theorem 1.27 that the valuations on K are one for each irreducible
polynomial p(T ) ∈ k[T ] and one at infinity corresponding to 1

T
. It follows

that if f(T )
g(T )

is an element of OS, then no irreducible polynomial can divide

g(T ), implying deg g(T ) = 0. On the other hand, for

v∞(
f

g
) = − deg f + deg g

to be nonnegative, deg f must be 0; therefore,

OS = k.

We also saw that
OMK\{v∞} = k[x].

We say that S has the strong approximation property if

D1: Every valuation in S is principal.

D2: Every x ∈ K is in Op for all but finitely many p ∈ S.

D3: Given p, p′ ∈ S and for every N > 0, there exists some x ∈ K satisfying

(i) vp(x− 1) > N,

(ii) v′p(x) > N,

(iii) vq(x) ≥ 0 for all q ∈ S.
Theorem 2.26 (Strong Approximation Theorem). Let S be a family of in-
equivalent valuations on some field K. Let p1, . . . , pn ∈ S and let a1, . . . , an ∈
K. If S has the strong approximation property, then for every N > 0 there
exists some x ∈ OS such that vpi(x− ai) > N for i = 1, . . . , n.

Proof. Read Cohn, Theorem 4.1.
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2.2.1 Fractional Ideals

We can define multiplication on ideals I and J of some ring R as

I · J = {
n∑

k=1

xkyk|xk ∈ I, yk ∈ J}.

Basic properties of ideal multiplication are presented in the next proposition.

Proposition 2.27. Multiplication of ideals is associative with the unit ele-
ment being R.

Proof.

Two properties of a group is checked, the remaining one is the existence of
inverses. Considering the case of R = Z and I = 2Z, we realize the need for
inverses in R:

2Z · 1
2
Z = Z.

To find generators like 1
2
, we need to pass to a field containing R. In partic-

ular, these inverse ideals are not ideals of R anymore.

Recall the properties of an ideal: We call I an ideal of R if

1. I ⊆ R,

2. x+ y ∈ I for every x, y ∈ I.

3. cx ∈ I for every c ∈ R, x ∈ I.

Crossing out the first property we are left with closure under addition and
multiplication by constants, in which case we call I an R-module. This calls
for a definition: Let O be a ring contained in some field K. A fractional ideal
I of O is an O-module I ⊆ K such that

uO ⊆ I ⊆ vO
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for some u, v ∈ K.

If I ⊆ O is an ideal, then u ∈ I arbitrary and v = 1 makes I a fractional
ideal. In fact, the fractional ideals of O that are contained in O correspond
to normal ideals in O and are called integral ideals.

Let I and J be fractional ideals of O with

u1O ⊆ I ⊆ v1O
u2O ⊆ J ⊆ v2O.

Then

I · J = {
n∑

k=1

xkyk|xk ∈ I, yk ∈ J}

is a fractional ideal of O with

u1u2O ⊆ IJ ⊆ v1v2O.

Given a fractional ideal I of O, does there exist some fractional ideal J such
that IJ = O? This is true exactly when O is a Dedekind domain. Going
back, for a family S of inequivalent valuations, the ring OS is a Dedekind
domain exactly when S has the strong approximation property.

Let

I = Of1 + · · ·+Ofr

for some

fi =
gi
hi
, gi, hi ∈ O

be a finitely generated O-submodule and let K be the field of fractions of
O. Define h = h1 · · ·hr. Multiplying by h kills the denominators, so we have
hI ⊆ O and I ⊆ h−1O. It is easy to see that

O · I = I and I · O = I,

so we have an identity element.6 Given I, if there exists J such that I ·J = O,
we say that I is invertible.

6The ⊆’s are by I being a sum with O coefficients and ⊇’s are by 1 ∈ O.
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In general, we define

(O : I) = {x ∈ O : xI ⊆ O}

which is a fractional ideal and an O-submodule because if x1, x2 ∈ (O : I)
then x1I ⊆ O and x2I ⊆ O which gives (a1x1 + a2x2)I ⊆ O meaning that
a1x1 + a2x2 ∈ (O : I) for every a1, a2 ∈ O. Also, if uO ⊆ I ⊆ vO then

v−1O ⊆ (O : I) ⊆ u−1O

which means that (O : I) is a fractional ideal. Further, we always have
I · (O : I) ⊆ O; if equality holds, we say that I is invertible and its inverse
I−1 is (O : I).

As an example, let I ⊆ Q be a Z-module. For a common denominator h ∈ Z,
we have hI ⊆ Z. The ideals of Z are of the form nZ for some n ∈ Z, hence

hI = nZ = ⟨p1⟩e1 . . . ⟨pr⟩er

if n factors into primes as n = pe11 . . . perr . It follows that

I = ⟨p1⟩e1 . . . ⟨pr⟩er⟨q1⟩−f1 . . . ⟨qs⟩−fs

=
∏

paii

where h = qf11 . . . qfss is the prime factorization of h.

This example hints at a correspondence between fractional ideals ideals and
tuples (ap)p∈S of integers. Observe that ap is zero for infinitely many valu-
ations. The second axiom of the strong approximation property says that
vp(x) = 0 for almost all p ∈ S when x is fixed.

Define the multiplication of two formal products of valuations
∏

p∈S p
ai
i and∏

p∈S p
bi
i as ∏

p∈S

paii
∏
p∈S

pbii =
∏
p∈S

pai+bi
i .

Notice that this is a free abelian group generated by elements in S where
instead of the additive notation

∑
aipi we use the multiplicative notation as

above.
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We want to find an isomorphism between the set of fractional ideals and the
tuples (ap)p∈S. We saw that (ai) establishes a free abelian group so if we can
construct such an isomorphism, then the fractional ideals, hence the number
theory part will be tamed. We will see that such an isomorphism holds in
the Dedekind domains, hence all fractional ideals will be invertible.

Let’s first consider an example.

Example 2.4. Let x ∈ 7
18
Z so we have v2(x) ≥ −1, v3(x) ≥ −2, v7(x) ≥ 1

and vp(x) ≥ 0 for the others. We define a2 = −1, a3 = −2, a7 = 1 and ap = 0
so we get the product as (2Z)−1 · (32Z)−1 · 7Z.

Let F be the set of O-modules contained in K, and let D be the free abelian
group generated by S :

D =

{∏
p∈S

pap : ap ∈ N

}
.

Define the maps

vp : F → Z
I 7→ min

x∈I
vp(x)

and

φ : F → D

I 7→
∏
p∈S

pvp(I).

The map vp is well defined: As uO ⊆ I ⊆ vO we have vp(u) ≥ vp(I) ≥ vp(v),
hence vp(x) ∈ Z.

Moreover, φ is a group homomorphism: Let I and J be two fractional ideals.
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Then

vp(I · J) = min∑
k akbk∈I·J

vp

(∑
akbk

)
≥ min∑

k akbk∈I·J
min
k
vp (akbk)

≥ min
a∈I, b∈J

vp(ab)

= min
a∈I

vp(a) + min
b∈B

vp(b)

= vp(I) + vp(J).

On the other hand, vp(I · J) ≤ vp(I) + vp(J) because ab ∈ I · J for a ∈ I
and b ∈ J satisfying vp(a) = vp(I) and vp(b) = vp(J). We conclude that
vp(I · J) = vp(I) + vp(J) and that φ is a homomorphism.
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On the other direction, define the map ψ : D → F as

ψ(
∏
p∈S

pap) = {x ∈ K : vp(x) ≥ ap}.

Proposition 2.28. The map ψ is a well-defined group homomorphism that
satisfies I ⊆ ψ(φ(I)) for any I ∈ F .

Proof. The image ψ(
∏

p∈S p
ap) is a O-module contained in K:

The map ψ is a group homomorphism:

I ⊆ ψ(φ(I)):

Lemma 2.29. If S has the strong approximation property, then ψ(
∏

p∈S p
ap)

is a fractional ideal for every
∏

p∈S p
ap .

Proof. Let
∏n

i=1 p
ai
i ∈ D with ai ̸= 0 for all i = 1, . . . , n. Apply Theorem

2.26, the Strong Approximation Theorem, with N = −min a1, . . . , an, 0 to
get some x ∈ OS such that vpi(x− ai) > N for i = 1, . . . , n; consequently,

ψ(
∏
p∈S

pap) ⊆ x−1OS.
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To find a nonzero element u ∈ ψ(
∏

p∈S p
ap), use the theorem again. Then

uOS ⊆ ψ(
∏

p∈S p
ap) and the image is a fractional ideal.

Lemma 2.30. Let A be a fractional ideal. If x ∈ K such that vp(x) ≥ vp(A)
for all p ∈ S, then x ∈ A, i.e. ψ(φ(A)) ⊆ A.

Proof. Let B = x−1A and C = B ∩ OS. For every p ∈ S it must be the case
that vp(B) ≤ 0 and vp(C) = 0.

Take c ∈ C. If c is a unit in C ⊆ B, then cc−1 = 1 ∈ B, hence x ∈ A and we
are done; otherwise, choose ai ∈ C where vpi(C), which is 0 because C ⊆ OS,
is attained for those finitely many valuations p1, . . . , pn with vpi(c) ̸= 0. By
Theorem 2.26, for each j = 1, . . . , n there is some bj such that

vpj(bj − a−1
j ) ≥ vpj(c),

vpi(bj) ≥ vpi(c), ∀i ∈ {1, ·, ĵ, ·, n},
vq(bj) ≥ 0, q ̸= p1, . . . , pn.

Since vp(c) ∈ OS and vpj(aj) = 0 we have b ∈ OS.

Put a =
∑
ajbj and d = c−1(1 − a). If d ∈ OS, then 1 = dc + a ∈ c and we

are done; otherwise, by the choice of each b’s we have

vpj(1− a) = vpj((1− (ajbj))−
∑
i ̸=j

aibi

≥ vpj(−aj(bj − a−1
j )) ≥ 0 + vpj(c)

= vpj(c),

hence c−1(1− a) ∈ OS.

Theorem 2.31. When S has the strong approximation property, ψ ◦ φ is
identity.

Proof. Let J =
∏

p∈S p
ap , ap ∈ Z. We need to find x ∈ ψ(J) such that

vp(x) = ap and vq(x) ≥ aq, ∀q ̸= p.
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Since p’s are normalized, vp’s are surjective. Take β ∈ K such that vp(β) = ap
and use Theorem 2.26 to find x such that

vp(x− β) = ap + 1 and vq(x) ≥ aq, ∀q ̸= p.

Theorem 2.32. Let K be a field and let S be a set of places with the strong
approximation property. Put OS =

⋂
p∈S Op. Then the fractional ideals of OS

form an abelian group isomorphic to the divisor group on S. In particular,
every fractional O-ideal is invertible:

I−1 = ψ(φ(I)−1).

Theorem 2.33. Let O be an integral domain with the field of fractions K.
Then the following are equivalent:

(i) O is the intersection of principal valuation rings Op ⊂ K with the
strong approximation property.

(ii) Fractional O-ideals form a group with respect to the ideal multiplication.

(iii) O satisfies the following:

(a) O is Noetherian.

(b) O is integrally closed in K.

(c) Every nonzero prime ideal of O is maximal.

An integral domain satisfying these properties is called a Dedekind domain.

Theorem 2.34. Let A be a ring. Then the following are equivalent:

(i) The set Σ of ideals of A satisfies the ascending chain condition: Every
increasing chain I1 ⊆ I2 ⊆ . . . of ideals stabilizes, i.e. Ik = Ik+1 = . . .
for some k.

(ii) Every nonempty set of ideals I ⊂ Σ has a maximal element.

(iii) Every ideal of A is finitely generated.
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Proof. The equivalence of (i) and (ii) is clear.

(i) =⇒ (iii): Let I be an ideal of A, and let f ∈ I. If I \ (f1) = ∅ we
are done. Otherwise, choose f2 ∈ I \ (f1) and so on. This constructs an
ascending chain

(f1) ⊂ (f1, f2) ⊂ . . . .

By (i), this chain stabilizes, i.e.

I \ (f1, . . . , fn) = ∅

for some n. As (f1, . . . , fn) ⊆ I, we get

I = (f1, . . . , fn).

(Note that, this proof uses the axiom of choice while choosing f1, f2, . . . . An
alternative proof that do not use it is given next.)

(ii) =⇒ (iii): Given an ideal I, consider the set S of the finitely generated
ideals of A which are contained in I. This set is nonempty since (0) ∈ S. By
(ii), S has a maximal element, say J. Let f ∈ I. By maximality, (f, J) = J
so f ∈ J.

(iii) =⇒ (i). Let I1 ⊆ I2 ⊆ . . . be an ascending chain of ideals of A. The
set I =

⋃∞
i=1 Ii satisfies a + b ∈ I because some Ik contains both a and b,

so a + b ∈ Ik ⊆ I. Also, if r ∈ I and a ∈ I, then ra ∈ Ik for some k, so
ra ∈ I. It follows that I is an ideal. By (iii), it must be finitely generated.
Let I = (f1, . . . , fn). There is some Ik containing all fi. Then

I = (f1, . . . , fr) ⊆ Ik ⊆ Ik+1 ⊆ I,

so the chain stabilizes.

A ring that satisfies these properties is called a Noetherian ring.

Lemma 2.35. Let O be an integral domain with field of fractions K. If the
set of O-fractional ideals form a group, then O is Noetherian.
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Proof. Let I be an ideal of O. We would like to show that I is finitely
generated. If I = (0) then it is already finitely generated. Otherwise, there
is some fractional ideal I−1 of O such that II−1 = O, which goes to say that,
in particular,

r∑
i=1

aibi = 1

for some ai ∈ I and bi ∈ I−1.

Let x ∈ I. Write

x = x1 = x
r∑

i=1

aibi =
r∑

i=1

ai(xbi).

As II−1 = O we have xbi ∈ O for i = 1, . . . , r; hence, I is generated by
a1, . . . , ar over O.

Let O be a Dedekind domain with field of fractions K. Consider the map

Θ: K× → DK

α 7→
∏

pvp(α)

where DK is the free abelian group on all (principal) valuations of K.

If α ∈ kerΘ then α /∈ mp for any maximal ideal mp, hence α ∈ O×. Con-
versely, if α ∈ O×, then it is not contained in any proper ideal, so

kerΘ = O×.

Denote O× = U.

We have the short exact sequence

1 −→ U −→ K× Θ−→ DK −→ DK/Θ(K×) −→ 1,

which is a short (and fancy) way of saying that at each particular place in
the sequence, the image and the kernel are the same. In this case, it says
that U embeds into K× and U = kerΘ while the quotient map surjects.
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Note that

vp(αβ) = vp(α) + vp(β)

implies

Θ(αβ) = Θ(α)Θ(β),

so the image ImΘ of Θ is a subgroup of DK .

The quotient DK/Θ(K×) is called the class group. We will try to understand
the map Θ by getting a hold on the units and on the class group.

April 25

Theorem 2.36. Let OK be the intersection OK =
⋂

p∈S Op of the valuation
rings of all non-archimedean valuations of a number field K. The integral
closure icK(Z) of Z in K is OK .

Proof. That OK ⊂ icK(Z) follows from icK(Op) =
⋂

p|qOq. For the other

direction, let α ∈ icK(Z). Then there is some irreducible monic polynomial
f ∈ Z[x] such that f(α) = 0. Having integer coefficients, f ∈ Op[x] for all
primes p ∈ Z hence icK(Z) ⊆ OK .

3 Algebraic Function Fields & Riemann-Roch

In what follows, we will deal with the rational function field K(x) and its
finite extensions F/K, which we call function fields (over K). Two good
references for this part are [1] and [2].

We call K the constant field of F/K, but there may be more constants as in
the case of C(x,

√
x3 + ax+ b)/R. We call K̃ = F ∩ K̄ the full constant field

of F/K.
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3.1 Valuations over the Constant Field

We have seen the valuations of K(x) at Theorem 1.27. Valuations of a
function field F/K are extensions of valuations of K(x).

Proposition 3.1. If v is a valuation of F over K, then v is also over K̃.

Proof. Let z ∈ K̃. Assume z /∈ Ov. Then z−1 ∈ Pv. By definition z is
algebraic, hence so is z−1: There are ai ∈ K such that

(z−1)r + · · ·+ a1z
−1 + a0 = 0,

and

v(z) = v

(
− 1

a0
((z−1)r−1 + · · ·+ a1)

)
≥ 0,

contradicting z /∈ Ov. We reach a similar contradiction when z−1 /∈ Ov, and
conclude that z ∈ Ov \ Pv, i.e. v(z) = 0.

Maximal ideals P of valuations are called places and the set of all places of
F/K is denoted PF . Furthermore, we use OP and Ov interchangeably when
P = Pv and we denote by FP the residue class field OP/P of P .

One might see OP as the functions defined at the place P , and by abuse of
notation, P as functions which vanish there; whereas, the residue class field
is the field of values of functions in F at P : Using the map

OP → FP

z 7→ z + P,

we will set z(P ) = z + P as the value of z at the place P . Also, we can
extend this map to F as

F → FP ∪ {∞}

z 7→

{
z + P if z ∈ OP

∞ if z /∈ OP .

Homework 3.1. Op(x)/Pp(x)
∼= C for p(x) = x2 + 1 ∈ R[x].

61



Since we are dealing with valuations overK, for every P we haveK∩P = {0}.
As a result, the composition of K ⊆ OP and the map OP ↠ FP above, K
injects into FP . We define the degree of P as the degree of this field extension:

degP = [FP : K].

If degP = 1 then P is called a rational place.

Lemma 3.2. If z ∈ P is nonzero, then [F : K(z)] is finite.

Proof. As z ∈ P and nonzero, we know that v(z) ̸= 0 and by Proposition
3.1, we have z /∈ K̃. In particular, z is transcendental over K, so both F and
K(z) have transcendence degree 1 over K; hence, [F : K(z)] is finite.

Lemma 3.3. [FP : K] ≤ [F : K(z)].

Proof. Suppose z1(P ), . . . , zr(P ) ∈ FP are linearly independent where z1, . . . , zr ∈
OP . If we can show that z1, . . . , zr are linearly independent over K(z), then
we are done.

Let
φ1(z)z1 + · · ·+ φr(z)zr = 0

for some φ1, . . . , φr ∈ K(z). Multiplying by a common denominator and
modding out the common z factors, we can take φ1, . . . , φr ∈ K[z] not all
divisible by z. Let φi(z) = ai+zgi(z) with ai ∈ K and gi ∈ K[z]. Evaluating
the linear relation at P ,

φ(P ) + z1(P ) + · · ·+ φr(P )zr(P ) = a1z1(P ) + . . . arzr(P ) = 0.

As z1(P ), . . . , zr(P ) are K-linearly independent, all ai = 0. Contradiction.

Proposition 3.4. [FP : K] is always finite.

Proof. Apply Lemmas 3.2 and 3.3.

Corollary 3.5. [K̃ : K] is finite.

Proof. The degree [FP : K] is finite for any P ∈ PF and K ⊆ K̃ ⊆ PF .
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Corollary 3.6. If there is one rational place on F , then K̃ = K.

For z ∈ F and P ∈ PF with vP (z) = n, if n > 0 we say z has a zero of order
n at P , and if n < 0 we say z has a pole of order n at P .
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