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1. INTRODUCTION

1.1. Broad Impact

Recently, in [1], the authors showed that there exists a regular language L such

that every sufficiently long string “forgets” more than one bit of information at every

step of its computation on every deterministic finite automaton recognizing L. In

this project, we extend this result on the average behavior of information loss by

constructing languages that forget half a bit, one third a bit, etc., at every step of

computation, hence build a hierarchy of this so called entropy cost.
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2. PROJECT DEFINITION AND PLANNING

2.1. Project Definition

An alphabet is a possibly infinite set of symbols. If Σ is an alphabet, Σ∗ denotes

the set of all possible strings in that alphabet, and Σn ⊂ Σ∗ those strings of length n.

A language L on an alphabet Σ is any subset L ⊆ Σ∗.

A deterministic finite automaton (DFA) D is a 5-tuple D = (Σ, Q, δ, q0, F ) where

• Σ is a finite alphabet,

• Q is the set of states of D,

• δ : Q× Σ → Q is the transition function,

• q0 ∈ Q is the initial state,

• F ⊆ Q is the set of accepting states of D.

Given w = w1 . . . wn ∈ Σn, if (q0, q1, . . . , qn) is the sequence of states M traverses while

running on w, i.e., if qi = δ(qi−1, wi) for all i = 1, . . . , n, then we say M accepts w if

qn ∈ F and rejects otherwise. The set of all stringsM accepts is the language recognized

by M .

Example 2.1.1. The DFA ({a, b}, {q0, q1}, δ, q0, {q1}) for

δ(q0, a) = q0, δ(q0, b) = q1,

δ(q1, a) = δ(q1, b) = q0

is in Figure 2.1. The language recognized by this DFA is the set of all strings ending

with the letter a.

△
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a

ab

b

q0 q1

Figure 2.1. An example DFA.

Given a DFA M = (Q,Σ, δ, s, F ), for a letter σ ∈ Σ, we denote the number of

σ-transitions into state u ∈ Q as χM(u, σ) –or χ(u, σ) when the referred DFA is clear.

We say a language L ⊆ Σ∗ has average entropy at most s if there is a DFA D

recognizing L such that for sufficiently large n, every w = w1 . . . wn ∈ Σn satisfies

∑n
i=1 χD(ui, wi)

n
≤ s,

where (u0, u1, . . . , un) is the sequence of statesD traverses under w. Similarly, we define

a language with average entropy at least s, and say a language has average entropy s

if it has average entropy both at least and at most s.

Our project is to prove the following theorem:

Theorem 2.1.2 (Entropy Hierarchy). For every n > 0, there exists a language with

entropy 1/n+ ϵ.

2.2. Project Planning

We have divided our time between midterms. For the first midterm, we aimed at

constructing languages with entropy at most 1/n for every n > 0. In the second half of

the term, we turned to dealing with regular languages according to the lower bounds

on their entropy cost, which will let us conclude the proof of Theorem 2.1.2.
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3. RELATED WORK

We say a computation is reversible if one can trace all the steps of the computation

back given the state of the machine after the computation and the input it has read.

In [2], Landauer showed that every bit irreversible machines “forget” causes them to

dissipate heat.

In the context of DFAs, irreversibility comes from more than one incoming tran-

sitions to a state which are labeled with the same letter. Turing machines can be made

irreversible by can recording which state they came from in their work tape, and, even,

DFAs which have 2-way access to their input [3].

On the other hand, it is known that, reversible DFAs can recognize only a proper

subset of all regular languages [4]; therefore, it is of interest to understand the change

in the entropy cost over the class of regular languages [5, 6]. In particular, we are

working to extend the main result about constructing a maximally expensive language

of [1] to introduce languages in each level of energy expenditure.
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4. METHODOLOGY

4.1. Observation

Consider the language L = {w ∈ {a, b}∗| w contains “bb” and ends with a “b”}.

The minimal DFA D = ({a, b}, Q, δ, 1, {3}) recognizing L is given in Figure 4.1.

a

a

b
b

b

b

a
a

1 3 42

Figure 4.1. A minimal DFA D for L.

For w ∈ {a, b}n, let (u0, u1, . . . , un) be the sequence of states traversed by D while

running on w. Since χ(u, σ) ≤ 3 for every u ∈ Q and σ ∈ {a, b}, we can bound the

average entropy of this computation by

∑n
i=1 log2(χ(ui, wi))

n
≤
∑n

i=1 log2(3)

n
= log2(3).

Now, we propose a scheme to cut this cost –hence the upper bound log2(3)– down

by a half: Let M = ({a, b, x}, Q′, δ′, 1, {3}) be the DFA given in Figure 4.2. We observe

that adding a free1 state ux for every original state u, and making loops of length 2 at

the newborn dump2 states ua and ub halves the entropy cost.

4.2. Application

Lemma 4.2.1. Let L = {w ∈ {a, b}∗| w contains “bb” and ends with a “b”}. Then

there exists a DFA which recognizes the language L2 = {xw1 . . . xwn|w ∈ L} with

average cost of entropy at most 1
2
+ ϵ for any given ϵ > 0.

1In the sense that χ(ux, σ) ≤ 1 for every σ ∈ {a, b, x}.
2In the sense that there is no coming back from them to acceptance.
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Figure 4.2. The DFA M .



7

Proof. By [1, Lemma 10], given ϵ > 0, there exists a DFA Dϵ which recognizes L2 with

an average cost of entropy at most 1 + ϵ.

Apply the above construction to Dϵ: Let M = ({a, b, x}, Q′, δ′, 1, {3}) be the DFA

where Q′ = Q∪Qx∪Qa∪Qb∪Qxx∪Qaa∪Qbb∪Qxxx, and the transition function

δ′ is as follows:

δ′(q, σ) =


qx if σ = x

qa if σ = a.

qb if σ = b.

δ′(qx, σ) =

δ(q, σ) if σ = a, b

qxx if σ = x.

δ′(qa, σ) =

qa if σ = b, x

qaa if σ = a.

δ′(qb, σ) =

qb if σ = a, x

qbb if σ = b.

δ′(qaa, σ) =

qaa if σ = b, x

qa if σ = a.

δ′(qbb, σ) =

qbb if σ = a, x

qb if σ = b.

δ′(qxx, σ) =

qxx if σ = a, b

qxxx if σ = x.

δ′(qxxx, σ) =

qxxx if σ = a, b

qxx if σ = x.

Let us call the states in Qa, Qb, Qxx, Qaa, Qbb, and Qxxx the outer states,
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and those in Q and Qx the inner states of M . Note that there is no coming back

from the outer states to the inner states, hence any computation entering an outer

state results in rejection; whereas states in Qx extend the previous transitions in D by

appending one x in front of every letter a or b; therefore, the given DFA M1 recognizes

the language L2.

If w ∈ {a, b, x}n, we want to show that

∑n
i=1 log2(χ(ui, wi))

n
≤ 1

2
.

Let j be the smallest index such that uj is an outer state of M . Thereafter, the

only source of entropy is the log2(2) = 1 entropy caused by the incoming a, b, and

x-transitions for states in Qa, Qb, and Qxx, respectively; but, in the worst case, these

can be incurred at every 2 steps, leading to the bound

χ(uj, wj) + · · ·+ χ(un, wn) ≤
⌊
n− j + 1

2

⌋
.

To compute the rest of the sum, we consider the cases where j is even and odd

separately. If j is even, then for this sub-computation to stay in the inner states, the

j − 1-letter long prefix w′ of w must be in the form w′ = xw2 . . . xwj−2x, and the

corresponding states ui, 0 ≤ i < j, must belong to Q for i even, and to Qx for i odd.

The numbers of incoming transitions for the original states Q did not change; therefore,

the entropy cost of running w′ on M can be calculated as

j−1∑
i=1

log2(χM(ui, wi)) = log2(χM(u1, x)) + log2(χM(u2, w2)) + · · ·+ log2(χM(uj−1, x))

= log2(1) + log2(χD(u2, w2)) + · · ·+ log2(χD(uj−2, wj−2)) + log2(1).

Since the entropy cost of the string w2w4 . . . wj−2 of length (j − 2)/2 can be at most
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(j − 2)/2 + ϵ(j − 2)/2 on D, when j is even, cost of w′ on M is seen to be bounded by

j−1∑
i=1

log2(χM(ui, wi)) ≤
j − 2

2
+ ϵ

j − 2

2
.

Similarly, when j is odd, the prefix w′ is of the form w′ = xw2 . . . xwj−1, and ui,

0 ≤ i < j, still belongs to Q for i even, and to Qx for i odd, which divides the sum as

j−1∑
i=1

log2(χM(ui, wi)) = log2(χM(u1, x)) + log2(χM(u2, w2)) + · · ·+ log2(χM(uj−1, wj−1))

= log2(1) + log2(χD(u2, w2)) + · · ·+ log2(1) + log2(χD(uj−1, wj−1)).

The entropy cost of w2w4 . . . wj−1 of length (j−1)/2 can be at most (j−1)/2+ϵ(j−1)/2

on D; hence, when j is odd, the entropy cost of w′ on M is bounded by

j−1∑
i=1

log2(χM(ui, wi)) ≤
j − 1

2
+ ϵ

j − 1

2
.

Combining the inner and the outer states, the entropy cost is bounded by

n∑
i=1

log2(χM(ui, wi)) =

j−1∑
i=1

log2(χM(ui, wi)) +
n∑

i=j

log2(χM(ui, wi))

≤ max

{
j − 2

2
,
j − 1

2

}
(1 + ϵ) +

⌊
n− j + 1

2

⌋
≤ n

2
(1 + ϵ).

■

We define Lk = {xk−1w1 . . . xk−1wn|w1 . . . wn ∈ L} for k ≥ 1.

Corollary 4.2.2. For every k ≥ 1, there is a language, namely Lk, with entropy cost

at most 1
k
+ ϵ.
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For the second part of our project, we aim to set a lower bound on the energy

complexity of the languages Lk. Namely, we want to prove the following:

Lemma 4.2.3. Let M be any DFA recognizing the language Lk. Then there exists

ϵ > 0 such that for all sufficiently large n, there exists an input string w = w1 . . . wn

for which

∑n
i=1 log2(χ(qi, wi))

n
≥ 1/k + ϵ,

where (q0, q1, q2, . . . , qn) is the sequence of states traversed by M during the consumption

of w, beginning with the start state q0.

Proof. Without loss of generality, discard any unreachable state in M . Then, by the

Myhill-Nerode Theorem, the states of M fall into 4+3(k− 1)+1 = 3k+2 equivalence

classes corresponding to the distinct states of the minimal DFA recognizing Lk, see

Figure 4.3 for the case k = 2. The general case of k > 2 is the straightforward

generalization of this DFA with k − 1 consequent x-transitions needed to reach the

original states 1, 2, 3, and 4.

Call a state of M a trash state if it is equivalent to the state 0 in the minimal

DFA. Inputs of the form xk−1wkx
k−1w2k . . . x

k−1wnk where wik ∈ {a, b}, i = 1, . . . , n,

does not enter trash as at any step, a possibility for being accepted is preserved;

whereas any other input enters trash immediately when it breaks this form because

every non-trash state has a way of reaching an accepting state, but the input we

consider would no longer have that possibility. Hence, M is comprised of one or more

trash states connected to a k-partite graph of states. Even more is true: If we call the

part containing the initial state the first part, and the part containing δM(q, xi) the ith

part, then a state in the ith part, where i < k, has transitions only to another states

in the (i + 1)th part, and those in the kth part has transitions only to the first part.

Call the states which are in the first part the essential states and those in the other

parts the auxiliary states.
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Figure 4.3. Minimal DFA of L2.
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Construct a new DFA M ′ on top of the essential states of M with the transition

function

δM ′(q, a) = δM(q, xk−1a), δM ′(q, b) = δM(q, xk−1b).

Since every new transition fits the form xk−1wkx
k−1w2k . . . x

k−1wkn above, there is no

need for the trash states; and since we have mapped strings of length k to those of

length 1, no need for the other parts of the k-partite graph –i.e. the auxiliary states–

as well because of the ordered structure of M we alluded to above. In particular, the

number of a- and the number of b-transitions entering an essential state are preserved

in passing from M to M ′. That is to say,

χM ′(q, a) = χM(q, a) and χM ′(q, b) = χM(q, b).

The language recognized by this new machine M ′ is

{w1 . . . wn ∈ {a, b}n|xk−1w1 . . . x
k−1wn ∈ Lk} = L.

By [1, Theorem 11], for all sufficiently large n, there is a string w = w1 . . . wn such that

for some ϵ > 0,

log2(χM ′(q1, w1)) + · · ·+ log2(χM ′(qn, wn)) ≥ (1 + ϵ)n,

where (q0, . . . , qn) is the sequence of states M ′ traverses while consuming w. Then,

for auxiliary states pij where i = 1, . . . , n and j = 1, . . . , k − 1, the input ŵ =

xk−1w1 . . . x
k−1wn makes M traverse the state sequence

(q0, p1,1, . . . , p1,k−1, q1, . . . , pn,1, . . . , pn,k−1, qn),

by the definition of the transition function of M ′. The entropy cost of this computation
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is

n∑
i=1

(
k−1∑
j=1

log2(χM(pij, x)) + log2(χM(qi, wi))

)
≥

n∑
i=1

log2(χM(qi, wi))

=
n∑

i=1

log2(χM ′(qi, wi))

≥ (1 + ϵ)n.

Hence, the average entropy cost of ŵ on M is

∑n
i=1

(∑k−1
j=1 log2(χM(pij, x)) + log2(χM(qi, wi))

)
kn

≥ (1 + ϵ)n

kn
=

1

k
+

ϵ

k
.

■
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5. RESULTS

We have proved the following results:

Lemma 5.0.1. Let L = {w ∈ {a, b}∗| w contains “bb” and ends with a “b”}. Then

there exists a DFA which recognizes the language L2 = {xw1 . . . xwn|w ∈ L} with

average cost of entropy at most 1
2
+ ϵ for any given ϵ > 0.

Corollary 5.0.2. For every k ≥ 1, there is a language, namely Lk, with entropy cost

at most 1
k
+ ϵ.

Lemma 5.0.3. Let M be any DFA recognizing the language Lk. Then there exists

ϵ > 0 such that for all sufficiently large n, there exists an input string w = w1 . . . wn

for which

∑n
i=1 log2(χ(qi, wi))

n
≥ 1/k + ϵ,

where (q0, q1, q2, . . . , qn) is the sequence of states traversed by M during the consumption

of w, beginning with the start state q0.

Theorem 5.0.4. For every n > 0, there exists a language with entropy 1/n.
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6. CONCLUSION

Our main result is the Entropy Hierarchy Theorem.

Theorem 6.0.1 (Entropy Hierarchy). For every n > 0, there exists a language with

entropy 1/n+ ϵ.

Thus, we build a complexity hierarchy on the class of regular languages for the

entropy cost function.
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